Pengenalan Bahasa Isyarat Hijaiyah: Augmentasi Data dengan EfficientnetB7

Authors

  • Tanwir Tanwir Program Studi Magister Ilmu Komputer, Universitas Bumigora
  • Husain Husain Program Studi Magister Ilmu Komputer, Universitas Bumigora
  • Rifqi Hammad Program Studi Rekayasa Perangkat Lunak, Universitas Bumigora
  • Andi Sofyan Anas Program Studi Ilmu Komputer, Universitas Bumigora
  • Muhammad Azwar Program Studi Ilmu Komputer, Universitas Bumigora

DOI:

https://doi.org/10.35746/jtim.v7i4.728

Keywords:

Data Augmentation, Detection, EfisiennetB7, Hijaiyah Sign Language

Abstract

Sign language plays an important role as the primary means of communication for individuals with hearing impairments. This study aims to improve the accuracy of hijaiyah sign language detection through the application of the EfficientNetB7 architecture and data augmentation tech-niques. The method used, namely the EfficientNetB7 algorithm, was chosen as the base model be-cause of its ability to balance high accuracy with optimal resource utilization by performing data augmentation with rescale, shear, zoom, rotation, and flip horizontal techniques applied to enrich the variation of the original dataset of 6,811 images to 105,615 images. The experimental results show that the combination of EfficientNetB7 and data augmentation produces 99% accuracy on the test data, with consistent performance seen from the confusion matrix and accuracy loss graph for 50 epochs. This study proves that this approach not only improves model generalization but also reduces the risk of overfitting, thus potentially supporting social inclusion through efficient and reliable technology.

Downloads

Download data is not yet available.

References

J. Jiang, “Sign Language Recognition Methods: Applications and Advances of Deep Learning Technology,” in 6th International Conference on Computer Science and Intelligent Communication (CSIC 2024), Vancouver, 2025. https://doi.org/10.54097/ryyycp94.

B. A. AL ABDULLAH, G. A. AMOUDI, and H. S. ALGHAMDI, “Advancements in Sign Language Recognition: A Comprehensive Review and Future Prospects,” IEEE Access, no. 12, p. 1, 2024, https://doi.org/10.1109/ACCESS.2024.3457692.

S. A. Sanjaya and H. Faustine Ilone, “BISINDO Sign Language Recognition: A Systematic Literature Review of Deep Learning Techniques for Image Processing,” Indones. J. Comput. Sci., vol. 12, no. 6, 2023, https://doi.org/10.33022/ijcs.v12i6.3539.

V. Acharya, V. Ravi, and N. Mohammad, “EfficientNet-based Convolutional Neural Networks for Malware Classification,” in 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), IEEE, 2021, https://doi.org/10.1109/icccnt51525.2021.9579750.

I. A. Adeyanju, O. O. Bello, and M. A. Adegboye, “Machine learning methods for sign language recognition: A critical review and analysis,” 2021, https://doi.org/10.1016/j.iswa.2021.200056.

M. S. Nemteanu, V. Dinu, and D. C. Dabija, “Job insecurity, job instability, and job satisfaction in the context of the COVID-19 pandemic,” J. Compet., vol. 13, no. 2, pp. 65–82, 2021, https://doi.org/10.7441/JOC.2021.02.04.

Y. Brianorman and R. Munir, “Perbandingan Pre-Trained CNN: Klasifikasi Pengenalan Bahasa Isyarat Huruf Hijaiyah,” J. Sist. Info. Bisnis, vol. 13, no. 1, 2023, https://doi.org/10.21456/vol13iss1pp52-59.

D. Iskandar Mulyana, M. Faizal Lazuardi, and M. Betty Yel, “Deteksi Bahasa Isyarat Dalam Pengenalan Huruf Hijaiyah Dengan Metode YOLOV5,” J. Tek. Elektro dan Komputasi, vol. 4, 2022, https://doi.org/10.32528/elkom.v4i2.8145.

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, https://doi.org/10.1186/s40537-019-0197-0.

Q. Jiang, Y. Gu, C. Li, R. Cong, and F. Shao, “Underwater image enhancement quality evaluation: Benchmark dataset and objective metric,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 9, pp. 5959–5974, 2022, https://doi.org/10.1109/TCSVT.2022.3164918.

N. Marastoni, R. Giacobazzi, and M. Dalla Preda, “Data augmentation and transfer learning to classify malware images in a deep learning context,” J. Comput. Virol. Hacking Tech., vol. 17, no. 4, 2021, https://doi.org/10.1007/s11416-021-00381-3.

M. Hossain and H. Chen, “Application of Machine Learning on Software Quality Assurance and Testing: A Chronological Survey,” Int. J. Comput. their Appl., vol. 29, no. 3, 2022, https://doi.org/10.29007/5p9l.

S. U. Rahman, F. Alam, N. Ahmad, and S. Arshad, “Image processing based system for the detection, identification and treatment of tomato leaf diseases.,” Multimed. Tools Appl., vol. 82, no. 6, pp. 9431–9445, 2023, https://doi.org/10.1007/s11042-022-13715-0.

A. S. Anas and A. A. Rizal, “Deteksi Tepi dalam Pengolahan Citra Digital,” Semin. Nas. TIK dan Ilmu Sos, vol. 2, pp. 1–6, 2017.

E. Alfariza, D. A. C. Tue, A. S. Anas, M. Tajuddin, and A. Adil, “Klasifikasi Aksara Sasak Menggunakan Convolutional Neural Networks (CNN),” JTIM J. Teknol. Inf. dan Multimed., vol. 6, no. 3, pp. 346–353, Nov. 2024, https://doi.org/10.35746/jtim.v6i3.623.

K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., vol. 3, no. 1, 2022, https://doi.org/10.1016/j.gltp.2022.04.020.

Downloads

Published

2025-11-04

Issue

Section

Articles

How to Cite

[1]
T. Tanwir, H. Husain, R. Hammad, A. S. Anas, and M. Azwar, “Pengenalan Bahasa Isyarat Hijaiyah: Augmentasi Data dengan EfficientnetB7”, jtim, vol. 7, no. 4, pp. 871–880, Nov. 2025, doi: 10.35746/jtim.v7i4.728.

Most read articles by the same author(s)