Comparative Analysis of Stock Price Prediction Using Deep Learning with Data Scaling Method

  • I Nyoman Switrayana Computer Science, Bumigora University
  • Rifqi Hammad Software engineering, Bumigora University
  • Pahrul Irfan Informatics Engineering, Univesity of Mataram
  • Tomi Tri Sujaka Computer Science, Bumigora University
  • Muhammad Haris Nasri Informatics Engineering, Bumigora University
Keywords: Stock Price, Prediction, Deep Learning, Data Scaling

Abstract

The dynamic and unpredictable nature of stock prices makes accurate forecasting an important challenge in financial analysis. This study aims to compare the performance of three deep learning models, namely, Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) in predicting stock prices on historical daily banking data from Yahoo Finance. The main objective is to determine the model that is best able to capture sequential patterns and temporal dependencies in stock price movements. Each model was trained and op-timized through data scaling, namely MinMax Scaler and Standard Scaler, with performance evaluated using Root Mean Square Error (RMSE) as the primary metric. Results show that while the RNN provides a basic approach, the GRU and LSTM models produce higher prediction accuracy, with GRU achieving the lowest RMSE thanks to its better ability to maintain long-term depend-encies. The RMSE achieved by RNN, GRU, and LSTM were 211.47, 158.89, and 197.45, respectively. The lowest error results were achieved when using MinMax Scaler. The use of MinMax Scaler here shows a better performance improvement with an average improvement of 22.57% compared to using Standard Scaler. This comparative analysis contributes to providing empirical insight into the relative effectiveness of the tested architectures. The findings suggest that the combination of GRU and MinMax Scaler can be a more reliable tool for financial forecasting, with the potential to develop more robust stock prediction applications under fluctuating market conditions.

Downloads

Download data is not yet available.

References

F. Nur Iman and D. Wulandari, “Prediksi Harga Saham Menggunakan Metode Long Short Term Memory,” Log. J. Ilmu Komput. dan Pendidik., vol. 1, no. 3, pp. 601–616, 2023. https://journal.mediapublikasi.id/index.php/logic/article/view/1855

M. R. Pahlawan, A. Djunaidy, R. A. Vinarti, and D. S. Informasi, “Prediksi Indeks Harga Saham Menggunakan Model Hibrida,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, 2022. https://doi.org/10.35957/jatisi.v9i4.3065

M. A. D. Suyudi, E. C. Djamal, A. Maspupah, J. Informatika, and F. Sains, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,” in Section SNATI 2019: Bidang Sistem Cerdas, Informatika, Text Mining & Visi Komputer, 2019, pp. 33–38. https://doi.org/10.35957/jatisi.v9i4.3065

P. Soni, Y. Tewari, and D. Krishnan, “Machine Learning Approaches in Stock Price Prediction: A Systematic Review,” J. Phys. Conf. Ser., vol. 2161, no. 1, 2022. https://doi.org/10.1088/1742-6596/2161/1/012065

A. Agusta, I. Ernawati, and A. Muliawati, “Prediksi Pergerakan Harga Saham Pada Sektor Farmasi Menggunakan Al-goritma Long Short-Term Memory,” Inform. J. Ilmu Komput., vol. 17, no. 2, pp. 164–173, 2021. https://doi.org/10.52958/iftk.v17i2.3651

C. C. Sumarga, D. E. Herwindiati, and J. Hendryli, “Rancangan Sistem Prediksi Harga Saham dengan Menggunakan Metode LSTM dan ARMA klasik,” J. Ilmu Komput. dan Sist. Inf., vol. 11, no. 1, 2023. https://doi.org/10.24912/jiksi.v11i1.24075

C. G. K. Simatupang, W. Swastika, and T. R. Suganda, “Perancangan Aplikasi Berbasis Web untuk Prediksi Harga Saham Dengan Metode LSTM,” Sainsbertek J. Ilm. Sains dan Teknol., vol. 3, no. 1, 2022. https://doi.org/10.33479/sb.v3i1.212

I. Akil and I. Chaidir, “Prediksi Harga Saham Twitter Dengan Long Short-Term Memory Recurrent Neural Network,” vol. 17, no. 1," INTI Nusa Mandiri", pp. 1–7, 2022. https://doi.org/10.33480/inti.v17i1.3277

Q. Ma, “Comparison of ARIMA, ANN and LSTM for Stock Price Prediction,” E3S Web Conf., vol. 218, pp. 1–5, 2020. 10.1051/e3sconf/202021801026

R. Julian and M. R. Pribadi, “Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, 2021. https://doi.org/10.35957/jatisi.v8i3.1159

C. Han and X. Fu, “Challenge and Opportunity: Deep Learning-Based Stock Price Prediction by Using Bi-Directional LSTM Model,” Front. Business, Econ. Manag., vol. 8, no. 2, pp. 51–54, 2023.

D. I. Puteri, “Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 11, no. 1, pp. 35–43, 2023. https://doi.org/10.34312/euler.v11i1.19791

W. Hastomo, A. S. B. Karno, N. Kalbuana, E. Nisfiani, and L. ETP, “Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19,” J. Edukasi dan Penelit. Inform., vol. 7, no. 2, pp. 133–140, 2021. https://doi.org/10.26418/jp.v7i2.47411

S. J. Pipin, R. Purba, and H. Kurniawan, “Prediksi Saham Menggunakan Recurrent Neural Network (RNN-LSTM) dengan Optimasi Adaptive Moment Estimation,” J. Comput. Syst. Informatics, vol. 4, no. 4, pp. 806–815, 2023. https://doi.org/ 10.47065/josyc.v4i4.4014

A. S. Saud and S. Shakya, “Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 788–798, 2020. https://doi.org/10.1016/j.procs.2020.03.419

A. Pambudi, “Penerapan Crisp-Dm Menggunakan Mlr K-Fold Pada Data Saham Pt. Telkom Indonesia (Persero) Tbk (Tlkm) (Studi Kasus: Bursa Efek Indonesia Tahun 2015-2022),” J. Data Min. dan Sist. Inf., vol. 4, no. 1, p. 1, 2023. https://doi.org/10.33365/jdmsi.v4i1.2462

I. N. Switrayana, D. Ashadi, H. Hairani, and A. Aminuddin, “Sentiment Analysis and Topic Modeling of Kitabisa Ap-plications using Support Vector Machine (SVM) and Smote-Tomek Links Methods,” Int. J. Eng. Comput. Sci. Appl., vol. 2, no. 2, pp. 81–91, 2023. https://doi.org/10.30812/ijecsa.v2i2.3406

Y. Zhu, “Stock price prediction using the RNN model,” J. Phys. Conf. Ser., vol. 1650, no. 3, 2020. https://doi.org/10.1088/1742-6596/1650/3/032103

G. Budiprasetyo, M. Hani’ah, and D. Zahira Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory ( LSTM ),” J. Nas. Teknol. dan Sist. Inf., vol. 03, no. 2022, pp. 164–172, 2023. https://doi.org/10.25077/teknosi.v8i3.2022.164-172

A. Satyo and B. Karno, “Prediksi Data Time Series Saham Bank BRI Dengan Mesin Belajar LSTM ( Long ShortTerm Memory ),” Journal of Informatic and Information Security," vol. 1, no. 1, pp. 1–8, 2020. https://doi.org/10.31599/jiforty.v1i1.133

S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “The comparison of forecasting analysis based on the ARIMA-LSTM hybrid models,” Proc. - 2021 Int. Conf. E-Commerce E-Management, ICECEM 2021, pp. 185–188, 2021. https://doi.org/10.1109/ICECEM54757.2021.00044

X. Fan, C. Tao, and J. Zhao, “Advanced Stock Price Prediction with xLSTM-Based Models: Improving Long-Term Fore-casting,” Preprints, 2024.https://doi.org/10.20944/preprints202408.2109.v1

M. Obthong, N. Tantisantiwong, W. Jeamwatthanachai, and G. Wills, “A survey on machine learning for stock price prediction: Algorithms and techniques,” FEMIB 2020 - Proc. 2nd Int. Conf. Financ. Econ. Manag. IT Bus., pp. 63–71, 2020. https://doi.org/10.5220/0009340700630071

I. N. Switrayana, S. Hadi, and N. Sulistianingsih, “A Robust Gender Recognition System using Convolutional Neural Network on Indonesian Speaker,” Sist. J. Sist. Inf., vol. 13, no. 3, pp. 1008–1021, 2024. https://doi.org/10.32520/stmsi.v13i3.3698

B. Gülmez, “Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm,” Expert Syst. Appl., vol. 227, no. January, p. 120346, 2023. https://doi.org/10.1016/j.eswa.2023.120346

Published
2025-01-04
How to Cite
[1]
I. N. Switrayana, R. Hammad, P. Irfan, T. T. Sujaka, and M. H. Nasri, “Comparative Analysis of Stock Price Prediction Using Deep Learning with Data Scaling Method”, jtim, vol. 7, no. 1, pp. 78-90, Jan. 2025.
Section
Articles