Pengembangan Platform Intervensi Status Gizi Ibu Hamil Berbasis Integrasi Case-Based Reasoning dan Teori Dempster–Shafer
DOI:
https://doi.org/10.35746/jtim.v8i1.905Keywords:
Case-Based Reasoning, Dempster-Shafer, Nutritional Intervention, Diagnosis, Child–Maternal NutritionAbstract
Nutritional problems among toddlers and pregnant women remain a major public health issue in Indonesia, necessitating a decision-support system capable of providing rapid and accurate nu-tritional diagnosis and intervention. This study develops an expert system integrating Case-Based Reasoning (CBR) and the Dempster–Shafer theory to diagnose the nutritional status of toddlers and pregnant women. The CBR method is employed to identify solutions for new cases based on similarity to previous cases, while the Dempster–Shafer theory is utilized to handle un-certainty and combine multiple forms of evidence derived from anthropometric, clinical, and health history parameters. The system was tested using 20 cases involving variables such as body weight, height, mid-upper arm circumference (MUAC), hemoglobin level (Hb), gestational age, and dietary intake. The results indicate that the system achieved an accuracy of 90%, an average confidence level of 82.7%, and a diagnostic precision of 88% when compared to expert nutrition-ists’ assessments. Diagnostic discrepancies occurred in only two cases (10%), both of which ex-hibited parameter values near the classification thresholds. These findings demonstrate that the integration of CBR and the Dempster–Shafer theory enhances the reliability of expert systems in generating accurate and measurable nutritional diagnoses despite data uncertainty, and shows strong potential as a decision-support tool for nutritionists in providing faster, more objective, and evidence-based nutritional interventions.
Downloads
References
J. P. dan G. Indonesia, “Resume Problematika Gizi Anak Indonesia 2023,” Jaringan Pangan dan Gizi Indonesia. Ac-cessed: Mar. 13, 2024. https://jpg-indonesia.net/2023/12/resume-problematika-gizi-anak-indonesia-2023/
K. D. J. P. Kesehatan, “Pengaruh Masalah Gizi pada Ibu Hamil,” Kemenkes Direktorat Jendral Pelayanan Kesehatan. Accessed: Mar. 13, 2024. https://yankes.kemkes.go.id/view_artikel/1464/pengaruh-masalah-gizi-pada-ibu-hamil
B. K. P. Kesehatan, Buku Saku Hasil Survei Status Gizi Indonesia. Jakarta: KEMENTERIAN KESEHATAN RI, 2023.
Administrator, “Bumil Sehat, Turunkan Stunting dan Angka Kematian Ibu,” Biro Komunikasi dan Pelayanan Masyarakat, Kementerian Kesehatan RI. Accessed: Mar. 14, 2024. https://kesmas.kemkes.go.id/konten/133/0/bumil-sehat-turunkan-stunting-dan-angka-kematian-ibu
A. Putri and B. Santoso, “Efektivitas Edukasi Kesehatan Digital dalam Meningkatkan Kesadaran Gizi pada Ibu Hamil di Wilayah Pedesaan,” Wellness (Jurnal Kesehat. dan Pelayanan Masyarakat), vol. 1, no. 2, 2024, https://doi.org/10.69688/jkpm.v1i2.215.
S. Syahrinullah, E. Evawaty, N. C. H. Hamzah, and Z. Zulfatmah, “Tinjauan Analisis Hasil Intervensi dan Audit Kasus Stunting pada Ibu Hamil di Wilayah Lokus Kabupaten Majene,” J. Pendidik. dan Teknol. Kesehat., vol. 7, no. 1, 2024, https://doi.org/10.56467/jptk.v7i1.131.
I. Fitrotuzzaqiyah and S. Rahayu, “Implementasi Intervensi Spesifik Dalam Upaya Pencegahan Stunting Balita Di Desa Gambarsari Kecamatan Pagaden Kabupaten Subang,” J. Nutr. Coll., vol. 11, no. 3, 2022, https://doi.org/10.14710/jnc.v11i3.32165.
G. Muthia, E. Edison, and E. Yantri, “Evaluasi Pelaksanaan Program Pencegahan Stunting Ditinjau dari Intervensi Gizi Spesifik Gerakan 1000 HPK Di Puskesmas Pegang Baru Kabupaten Pasaman,” J. Kesehat. Andalas, vol. 8, no. 4, 2020, https://doi.org/10.25077/jka.v8i4.1125.
I. G. Pratiwi, “Studi Literatur: Intervensi Spesifik Penanganan Stunting,” Indones. Heal. Issue, vol. 2, no. 1, 2023, https://doi.org/10.47134/inhis.v2i1.43.
A. Rahma and A. Nuradhiani, “Peningkatan Pengetahuan Tentang Pemberian Asi Eksklusif Dan Pendampingan Balita Gizi Buruk Dan Stunting Di Gresik, Jawa Timur,” Ghidza Media J., vol. 1, no. 1, 2019, https://doi.org/10.30587/ghidzamediajurnal.v1i1.1081.
M. Y. Sitohang, “Klasterisasi Kabupaten/Kota di Indonesia berdasarkan Permasalahan Gizi Balita: Intervensi Spesifik dan Sensitif,” OSF Prepr., 2020, https://doi.org/10.31219/osf.io/ap8qf.
T. A. Saputri, M. A. Syaputra, and D. Mulyana, “Implementasi Metode Cbr (Case Based Reasoning) Pada Identifikasi Gizi Buruk Untuk Balita,” Int. Res. Big-Data Comput. Technol. I-Robot, vol. 5, no. 1, 2021, https://doi.org/10.53514/ir.v5i1.178.
Y. E. B. Mawartika, E. Etriyanti, V. Amalia, and A. Alfiarini, “Implementasi Case Based Reasoning Untuk Mendeteksi Gejala Penyakit Gizi Buruk Pada Balita,” J. Pustaka Data (Pusat Akses Kaji. Database, Anal. Teknol. dan Arsit. Komputer), vol. 3, no. 1, 2023, https://doi.org/10.55382/jurnalpustakadata.v3i1.526.
Sandi Alam and G. widi Nurcahyo, “Sistem Pakar dalam Mendiagnosis Gizi Buruk pada Balita dengan Menggunakan Metode CBR,” J. Sistim Inf. dan Teknol., 2022, https://doi.org/10.37034/jsisfotek.v4i4.140.
P. A. Suherman and F. Tahel, “Metode Case-Based Reasoning Dalam Diagnosa Penyakit Stunting Pada Balita,” Inf. Syst. Data Sci., vol. 2, no. 1, 2023, https://doi.org/10.59840/inseds.v2i1.195.
D. ADHAR, “Sistem Pakar Mendiagnosa Penyakit Pre-Eklampsia Pada Ibu Hamil Menggunakan Metode Demp-ster-Shafer,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 5, no. 2, 2021, https://doi.org/10.59697/jtik.v5i2.408.
S. Muharni, S. Andriyanto, and D. Naista, “IMPLEMENTASI DEMPSTER SHAFER UNTUK MENDIAGNOSA GANGGUAN KEHAMILAN PADA IBU,” J. Inform., vol. 21, no. 2, 2021, https://doi.org/10.30873/ji.v21i2.3004.
G. G. Run, “Sistem Pakar Diagnosa Penyakit Kehamilan Menggunakan Metode Dempster-Shafer Berbasis Web,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 7, no. 1, 2022, https://doi.org/10.51876/simtek.v7i1.117.
J. C. D. Manu, S. A. S. Mola, and A. Fanggidae, “Sistem Pakar Mendiagnosa Penyakit pada Balita Usia 0 – 60 Bulan Menggunakan Metode Dempster-Shafer,” J. Komput. dan Inform., vol. 8, no. 1, 2020, https://doi.org/10.35508/jicon.v8i1.2026.
K. Venkatesh Raja, R. Siddharth, S. Yuvaraj, and K. A. Ramesh Kumar, “An Artificial Intelligence based automated case-based reasoning (CBR) system for severity investigation and root-cause analysis of road accidents – Comparative analysis with the predictions of ChatGPT,” J. Eng. Res., vol. 12, no. 4, 2024, https://doi.org/10.1016/j.jer.2023.09.019.
Y. Li, H. Du, and S. B. Kumaraswamy, “Case-based reasoning approach for decision-making in building retrofit: A re-view,” 2024. https://doi.org/10.1016/j.buildenv.2023.111030.
E. Khanmohammadi, H. Safari, M. Zandieh, B. Malmir, and E. B. Tirkolaee, “Development of Dynamic Balanced Scorecard Using Case-Based Reasoning Method and Adaptive Neuro-Fuzzy Inference System,” IEEE Trans. Eng. Manag., vol. 71, 2024, https://doi.org/10.1109/TEM.2022.3140291.
R. Wang, Y. Sun, J. Ni, X. Wu, and H. Zheng, “An improved case-based reasoning approach for mechanical design by enhancing the retrieval accuracy and leveraging the implicit knowledge,” Adv. Eng. Informatics, vol. 60, 2024, https://doi.org/10.1016/j.aei.2024.102374.
S. Suryadin, Nur Fitrianingsih, and Ita Fitriati, “Design Of An Expert System To Diagnose Diseases In Onion Plants Us-ing The Web-Based Dempster Shafer Method,” Eng. J. Mechatronics Educ., vol. 1, no. 1, 2024, https://doi.org/10.59923/mechatronics.v1i1.47.
M. Nahdi Anshari, Y. Agus Pranoto, and F. Xaverius Ariwibisono, “Penerapan Sistem Pakar Menggunakan Metode Dempster-Shafer Untuk Menentukan Program Penurunan Berat Badan Pada Member Fitness Berbasis Web,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, 2024, https://doi.org/10.36040/jati.v7i5.7631.
L. Fidon et al., “A Dempster-Shafer Approach to Trustworthy AI With Application to Fetal Brain MRI Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 5, 2024, https://doi.org/10.1109/TPAMI.2023.3346330.
C. Chen, J. Xu, J. Ni, G. Chen, and Z. Lyu, “An intelligent broaching tool design method based on CBR and support vector machine,” Adv. Eng. Informatics, vol. 60, 2024, https://doi.org/10.1016/j.aei.2024.102447.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Muhammad Haris Nasri, Rifqi Hammad, Gede Yogi Pratama

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




