Deteksi Malware pada Perangkat Android Menggunakan Ensemble Learning

Penulis

  • Muhamad Azwar Program Studi Ilmu Komputer, Universitas Bumigora
  • Lilik Widyawati Program Studi Ilmu Komputer, Universitas Bumigora
  • Raisul Azhar Program Studi Ilmu Komputer, Universitas Bumigora
  • Kartarina Kartarina Program Studi Rekayasa Perangkat Lunak, Universitas Bumigora
  • Tanwir Tanwir Program Studi Ilmu Komputer, Universitas Bumigora
  • Andi Sofyan Anas Program Studi Rekayasa Perangkat Lunak, Universitas Bumigora

DOI:

https://doi.org/10.35746/jtim.v7i3.573

Kata Kunci:

Mobile Security, Android, Machine Learning, Malware Detection

Abstrak

The increasing use of permission-based applications on mobile platforms has raised concerns regarding privacy and security. Android, being one of the most widely used operating systems for interacting with mobile applications, is particularly susceptible to various security risks that must be promptly addressed. Low digital literacy and a lack of user awareness about security risks—especially when installing applications from unofficial sources or without paying attention to access permissions—make users vulnerable to malware attacks. Uninformed users can easily become victims of malware insertion by irresponsible parties, turning them into targets for data manipulation and even data theft, which may then be sold on illegal forums. Attackers exploit the permission system, allowing them to freely access the target smartphone. This lack of awareness among users increases their vulnerability to malware injection and subsequent threats such as data manipulation and the theft of personal information, which can be traded on underground markets. One approach to detecting malicious behavior in mobile applications is the use of machine learning techniques. These techniques can analyze application patterns and behaviors based on features such as requested permissions. Popular algorithms for malware detection include Support Vector Machine (SVM) and Random Forest (RF), both of which have demonstrated strong performance in various studies. However, to further improve accuracy and reduce classification errors, ensemble learning approaches such as Adaptive Boosting (AdaBoost) are increasingly being adopted. Ensemble learning combines multiple predictive models to produce more reliable classification results compared to single models. This study evaluates the performance of several classification algorithms in detecting malicious Android applications. The results show that AdaBoost achieved a high accuracy rate of 91.65% and an AUC value of 95%, effectively distinguishing between safe applications and malware. Therefore, the use of machine learning algorithms—particularly ensemble methods like AdaBoost—can serve as a promising solution to enhance the security and privacy of Android-based mobile application users.

Unduhan

Data unduhan tidak tersedia.

Referensi

Lutfiah, “Aplikasi Kamus Simplisia Dan Resep Obat Tradisional (Sidota) Berbasis Android,” J. Sains dan Inform., vol. 8, no. 1, pp. 61–69, 2022, https://doi.org/10.34128/jsi.v8i1.369.

J. Hutagalung, P. S. Ramadhan, and S. J. Sihombing, “Keamanan Data Menggunakan Secure Hashing Algorithm (SHA)-256 dan Rivest Shamir Adleman (RSA) pada Digital Signature,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 6, 2023, https://doi.org/10.25126/jtiik.1067319.

R. Cabral, J. T. McDonald, L. M. Hively, and R. G. Benton, “Profiling CPU Behavior for Detection of Android Ransomware,” in Conference Proceedings - IEEE SOUTHEASTCON, 2022. https://doi.org/10.1109/SoutheastCon48659.2022.9764053.

F. Ullah, A. Alsirhani, M. M. Alshahrani, A. Alomari, H. Naeem, and S. A. Shah, “Explainable Malware Detection System Using Transformers-Based Transfer Learning and Multi-Model Visual Representation,” Sensors, vol. 22, no. 18, 2022, https://doi.org/10.3390/s22186766.

V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and S. Chen, “A survey on mobile malware detection techniques,” IEICE Trans. Inf. Syst., vol. E103D, no. 2, 2020, https://doi.org/10.1587/transinf.2019INI0003.

S. H. Khan et al., “A new deep boosted CNN and ensemble learning based IoT malware detection,” Comput. Secur., vol. 133, 2023, https://doi.org/10.1016/j.cose.2023.103385.

P. Mishra, A. Biancolillo, J. M. Roger, F. Marini, and D. N. Rutledge, “New data preprocessing trends based on ensemble of multiple preprocessing techniques,” 2020. https://doi.org/10.1016/j.trac.2020.116045.

N. A. Azeez, O. E. Odufuwa, S. Misra, J. Oluranti, and R. Damaševi?ius, “Windows PE malware detection using ensemble learning,” Informatics, vol. 8, no. 1, 2021, https://doi.org/10.3390/informatics8010010.

A. Mohammed and R. Kora, “A comprehensive review on ensemble deep learning: Opportunities and challenges,” 2023. https://doi.org/10.1016/j.jksuci.2023.01.014.

S. F. R. Roradi and I. R. Mutiaz, “Design of Borneo Virtual Tour Website as a Media for Promotion of Dayak Cultural Tourism Objects, Pampang Village Samarinda,” in Proceedings of the ICON ARCCADE 2021: The 2nd International Conference on Art, Craft, Culture and Design (ICON-ARCCADE 2021), 2022. https://doi.org/10.2991/assehr.k.211228.039.

J. Q. Guan, L. H. Wang, Q. Chen, K. Jin, and G. J. Hwang, “Effects of a virtual reality-based pottery making approach on junior high school students’ creativity and learning engagement,” Interact. Learn. Environ., vol. 31, no. 4, 2023, https://doi.org/10.1080/10494820.2021.1871631.

P. Bhattacharya et al., “Coalition of 6G and Blockchain in AR/VR Space: Challenges and Future Directions,” IEEE Access, vol. 9, 2021, https://doi.org/10.1109/ACCESS.2021.3136860.

V. B. -, Z. A. -, and E. P. -, “A Study on the Impact of Destination Image on Customer Value, Tourism Satisfaction, and Behavioral Intention in Jatim Park 2,” Int. J. Multidiscip. Res., vol. 6, no. 1, 2024, https://doi.org/10.36948/ijfmr.2024.v06i01.12899.

A. Sangal and H. K. Verma, “A Static Feature Selection-based Android Malware Detection Using Machine Learning Techniques,” in Proceedings - International Conference on Smart Electronics and Communication, ICOSEC 2020, 2020. https://doi.org/10.1109/ICOSEC49089.2020.9215355.

M. Gopinath and S. C. Sethuraman, “A comprehensive survey on deep learning based malware detection techniques,” 2023. https://doi.org/10.1016/j.cosrev.2022.100529.

H. Alamro, W. Mtouaa, S. Aljameel, A. S. Salama, M. A. Hamza, and A. Y. Othman, “Automated Android Malware Detection Using Optimal Ensemble Learning Approach for Cybersecurity,” IEEE Access, vol. 11, 2023,: https://doi.org/10.1109/ACCESS.2023.3294263.

A. Taha and O. Barukab, “Android Malware Classification Using Optimized Ensemble Learning Based on Genetic Algorithms,” Sustain., vol. 14, no. 21, 2022, https://doi.org/10.3390/su142114406.

X. Wang, L. Zhang, K. Zhao, X. Ding, and M. Yu, “MFDroid: A Stacking Ensemble Learning Framework for Android Malware Detection,” Sensors, vol. 22, no. 7, 2022, https://doi.org/10.3390/s22072597.

A. O. Christiana, B. A. Gyunka, and A. N. Oluwatobi, “Optimizing android malware detection via ensemble learning,” Int. J. Interact. Mob. Technol., vol. 14, no. 9, 2020, https://doi.org/10.3991/ijim.v14i09.11548.

S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Effective and Efficient Hybrid Android Malware Classification Using Pseudo-Label Stacked Auto-Encoder,” Journal of Network and Systems Management, vol. 30, no. 1, pp. 1–34, 2022, https://doi.org/10.1007/s10922-021-09634-4.

T. Yuniati, A. R. Tambunan, and Y. A. Setyoko, “Implementasi Static Analysis Dan Background Process Untuk Mendeteksi Malware Pada Aplikasi Android Dengan Mobile Security Framework,” LEDGER J. Inform. Inf. Technol., vol. 1, no. 2, 2022, https://doi.org/10.20895/ledger.v1i2.848.

N. Anwar, S. A. Akbar, A. Azhari, and I. Suryanto, “Ekstraksi Logis Forensik Mobile pada Aplikasi E-Commerce Android,” Mob. Forensics, vol. 2, no. 1, 2020, https://doi.org/10.12928/mf.v2i1.1791.

E. Prabakaran and K. Pillay, “Nanomaterials for latent fingerprint detection: A review,” 2021. https://doi.org/10.1016/j.jmrt.2021.03.110.

N. E. Goldameir, A. M. Yolanda, A. Adnan, and L. Febrianti, “Classification of the Human Development Index in Indonesia Using the Bootstrap Aggregating Method,” SinkrOn, vol. 6, no. 1, 2021, https://doi.org/10.33395/sinkron.v6i1.11173.

Y. Resti, C. Irsan, J. F. Latif, I. Yani, and N. R. Dewi, “A Bootstrap-Aggregating in Random Forest Model for Classification of Corn Plant Diseases and Pests,” Sci. Technol. Indones., vol. 8, no. 2, 2023, https://doi.org/10.26554/sti.2023.8.2.288-297.

R. Sibindi, R. W. Mwangi, and A. G. Waititu, “A boosting ensemble learning based hybrid light gradient boosting machine and extreme gradient boosting model for predicting house prices,” Eng. Reports, vol. 5, no. 4, 2023, https://doi.org/10.1002/eng2.12599.

S. R. Sharma, B. Singh, and M. Kaur, “A Novel Approach of Ensemble Methods Using the Stacked Generalization for High-dimensional Datasets,” IETE J. Res., vol. 69, no. 10, 2023, https://doi.org/10.1080/03772063.2022.2028582.

S. Marukatat, “Tutorial on PCA and approximate PCA and approximate kernel PCA,” Artif. Intell. Rev., vol. 56, no. 6, 2023, https://doi.org/10.1007/s10462-022-10297-z.

Diterbitkan

2025-06-16

Terbitan

Bagian

Articles

Cara Mengutip

[1]
M. Azwar, L. Widyawati, R. Azhar, K. Kartarina, T. Tanwir, dan A. S. Anas, “Deteksi Malware pada Perangkat Android Menggunakan Ensemble Learning”, jtim, vol. 7, no. 3, hlm. 408–419, Jun 2025, doi: 10.35746/jtim.v7i3.573.

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 > >>