Klasifikasi Aksara Sasak Menggunakan Convolutional Neural Networks (CNN)

  • Elga Alfariza Universitas Bumigora
  • Dicksa Ananda Christian Tue Universitas Bumigora
  • Andi Sofyan Anas Universitas Bumigora
  • Muhammad Tajuddin Universitas Bumigora
  • Ahmat Adil Universitas Bumigora
Keywords: Sasak Script, Handwriting Recognition, Convolutional Neural Networks, Classification, Cultural Preservation

Abstract

Sasak script is an important cultural heritage for the people of Lombok, but its use is decreasing along with the development of digital technology. This study aims to develop a classification system for Sasak script handwriting using Convolutional Neural Networks (CNN) to improve the accuracy of character recognition. The dataset used consists of handwritten images of 18 basic Sasak script characters collected from 50 volunteers with various writing styles. The methods applied include data preprocessing, augmentation, and training a CNN model with an architecture consisting of several convolutional and pooling layers. The results showed that the model achieved a validation accuracy of 92%, an average precision of 0.91, a recall of 0.89, and an F1-score of 0.90, indicating excellent performance in recognizing Sasak script characters. The conclusion of this study is that the developed system is not only effective in character recognition, but can also function as an interactive learning tool, supporting efforts to preserve Sasak script in the digital era. This research opens up opportunities for further development in the introduction of other traditional scripts.

Downloads

Download data is not yet available.

References

M. Tajuddin, A. S. Anas, A. Z. Amrullah, A. Adil, and R. F. Printi, “Penerapan Metode ADDIE dalam Pengembangan Aksara Sasak Baluk Olas (Delapan Belas) Berbasis Game,” Semin. Nas. Elektro, Tek. Inform., pp. 129–134, 2022, doi: 10.31284/p.snestik.2022.2673.

A. Sofyan Anas, M. Tajuddin, D. R. Fanny, and P. Ardi, “Desain Scanner untuk Digitalisasi Naskah Lontar Aksara Sasak dengan Smart Phone Menggunakan Black Box Testing,” Jtim 2022, vol. 4, no. 3, pp. 186–196, 2022, [Online]. Available: https://doi.org/10.35746/jtim.v4i3.260

M. Tajuddin, A. Adil, and A. S. Anas, “Game for Sasak Script Based on Knuth Morris Pratt Algorithm and ADDIE Model,” MATRIK J. …, vol. 22, no. 1, pp. 83–96, 2022, doi: 10.30812/matrik.v22i1.2363.

M. Tajuddin, D. Supatmiwati, S. Hidayat, and A. S. Anas, DIGITALISASI Konsep, Teknologi dan Penerapannya. MNC, 2022.

M. T. Anwar, S. Hidayat, and A. Adil, “Tansformasi Lontar Babad Lombok Menuju Digitalisasi Berbasis Natural Gradient Flexible (NGF),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, p. 275, 2021, doi: 10.25126/jtiik.2021824088.

S. Susandri, S. Defit, and M. Tajuddin, “Enhancing Text Sentiment Classification with Hybrid CNN-BiLSTM Model on WhatsApp Group,” J. Adv. Inf. Technol., vol. 15, no. 3, 2024.

Y. Ren, SPRINGER BRIEFS IN ELEC TRIC AL AND COMPUTER ENGINEERING  SIGNAL PROCESSING Big Visual Data Analysis Scene Classification and Geometric Labeling.

A. Kulkarni and A. Shivananda, Natural Language Processing Recipes.

P. K. Austin, “Aksara Sasak, an endangered script and scribal practice,” Proc. Int. Work. Endanger. Scripts Isl. Southeast Asia, no. February, pp. 1–12, 2014.

L. Deng and D. Yu, “Deep Learning,” pp. 3–4, doi: 10.1561/2000000039.

M. Tajuddin and N. N. Jaya, “Preservasi Naskah Kuno Sasak Lombok Berbasis Digital dan Website,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 445–454, 2018, doi: 10.25126/jtiik.201854787.

M. Tajuddin et al., “Baluk olas (Eighteen) Sasak Scripts in the Digital Era Based on the Mobile Games,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 3, pp. 1000–1017, 2023, doi: 10.18517/ijaseit.13.3.17019.

F. Bimantoro, A. Aranta, G. S. Nugraha, R. Dwiyansaputra, and A. Y. Husodo, “Pengenalan Pola Tulisan Tangan Aksara Bima menggunakan Ciri Tekstur dan KNN,” J. Comput. Sci. Informatics Eng., vol. 5, no. 1, pp. 60–67, 2021.

M. Tajuddin, A. S. Anas, A. Z. Amrullah, A. Adil, and R. F. Printi, “Penerapan Metode ADDIE dalam Pengembangan Aksara Sasak Baluk Olas (Delapan Belas) Berbasis Game,” Semin. Nas. Elektro, Tek. Inform., pp. 129–134, 2022.

M. T. Husain, “Digitalisasi Naskah Kuno Sasak Untuk Menjaga dan Melindungi, dan Melestarikan Budaya Berbasis Web,” in Seminar Nasional Saint dan Teknologi (SNST 9) UNWAHAS Tahun 2018, 2018, pp. 46–52.

G. F. Nama et al., “Rancang Bangun Aplikasi Game Edukasi Koleksi Permainan Aksara Lampung ( Koper Apung ) Berbasis Android Menggunakan Design and Development of Educatinal Game ‘ Koleksi Permainan Aksara Lampung ( Koper Apung )’ Based on Android Using Scrum,” JUrnla Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 421–429, 2019, doi: 10.25126/jtiik.201961096.

S. Hidayat, M. Tajuddin, A. Adil, M. Nur, and A. S. Anas, “Wavelet DB44 and MBB Algorithm for Sasak Vowels Recog-nition,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, pp. 0–4, 2019, doi: 10.1109/ICIC47613.2019.8985723.

G. Azahra, V. Arni, and A. Widodo, “Generation Z ’ s Perception of the Preservation of the Sasak Script,” IHSA Inst., vol. 12, no. 5, pp. 2870–2874, 2022, doi: 10.35335/legal.Generation.

Published
2024-11-19
How to Cite
[1]
E. Alfariza, D. A. C. Tue, A. S. Anas, M. Tajuddin, and A. Adil, “Klasifikasi Aksara Sasak Menggunakan Convolutional Neural Networks (CNN)”, jtim, vol. 6, no. 3, pp. 346-353, Nov. 2024.
Section
Articles

Most read articles by the same author(s)