Analisis Metode K-Nearest Neighbors (K-NN) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa

  • Kartarina Kartarina Universitas Bumigora Mataram
  • Ni Ketut Sriwinarti Universitas Bumigora Mataram
  • Ni luh Putu Juniarti Universitas Bumigora Mataram
Keywords: Data Mining, K-NN Methods, Naive Bayes Methods, Prediction, Student Graduation


In this research the author aims to apply the K-NN and Naive Bayes algorithms for predicting student graduation rates at Sekolah Tinggi Pariwisata (STP) Mataram, The comparison of these two methods was carried out because based on several previous studies it was found that K-NN and Naive Bayes are well-known classification methods with a good level of accuracy. But which one has a better accuracy rate than the two algorithms, that's what researchers are trying to do. The output of this application is in the form of information on the prediction of student graduation, whether to graduate on time or not on time. The selection of STP as the research location was carried out because of the imbalance between the entry and exit of students who had completed their studies. Students who enter have a large number, but students who graduate on time according to the provisions are far very small, resulting in accumulation of the high number of students in each period of graduation, so it takes the initial predictions to quickly overcome these problems. Based on the results of designing, implementing, testing, and testing the Student Graduation Prediction Application program using the K-NN and Naive Bayes Methods with the Cross Validation method, the result is an accuracy for the K-NN method of 96.18% and for the Naive Bayes method an accuracy of 91.94% with using the RapideMiner accuracy test. So based on the results of the two tests between the K-NN and Naive Bayes methods which produce the highest accuracy, namely the K-NN method with an accuracy of 96.18%. So it can be concluded that the K-NN method is more feasible to use to predict student graduation


Download data is not yet available.


H. Romadhona, A., Suprapedi , S. dan Himawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Berdasarkan Usia, Jenis Kelamin, Dan Indeks Prestasi Menggunakan Algoritma Decision Tree,” J. Teknol. Inf., vol. 13, pp. 69–83, 2017.

I. Budiman, D. T. Nugrahadi, and R. A. Nugroho, “Implementasi Algoritma K-Nearest Neighbour untuk Prediksi Waktu Kelulusan Mahasiswa,” Pros. SNRT (Seminar Nas. Ris. Ter., vol. 5662, pp. 9–10, 2016.

A. Azahari, Y. Yulindawati, D. Rosita, and S. Mallala, “Komparasi Data Mining Naive Bayes dan Neural Network memprediksi Masa Studi Mahasiswa S1,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, p. 443, 2020, doi: 10.25126/jtiik.2020732093.

L. Setiyani, M. Wahidin, D. Awaludin, and S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review,” Fakt. Exacta, vol. 13, no. 1, pp. 38–47, 2020, doi: 10.30998/faktorexacta.v13i1.5548.

A. A. Murtopo, “Prediksi Kelulusan Tepat Waktu Mahasiswa STMIK YMI Tegal Menggunakan Algoritma Naïve Bayes,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 7, no. 3, p. 145, 2016, doi: 10.22303/csrid.7.3.2015.145-154.

D. Kartini, “Penerapan Data Mining dengan Algoritma Neural Network (Backpropagation) Untuk Prediksi Lama Studi Mahasiswa,” Pros. Semin. Nas. Sisfotek, vol. 3584, pp. 235–241, 2017.

L. A. R. Hakim, A. A. Rizal, and D. Ratnasari, “Aplikasi Prediksi Kelulusan Mahasiswa Berbasis K-Nearest Neighbor (K-NN),” JTIM J. Teknol. Inf. dan Multimed., vol. 1, no. 1, pp. 30–36, 2019, doi: 10.35746/jtim.v1i1.11.

R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 427, 2018, doi: 10.25126/jtiik.201854773.

G. W. Sasmito, “Penerapan Metode Waterfall Pada Desain Sistem Informasi Geografis Industri Kabupaten Tegal,” J. Inform. Pengemb. IT, vol. 2, no. 1, pp. 6–12, 2017.

How to Cite
Kartarina, K., Sriwinarti, N. K., & Juniarti, N. luh P. (2021). Analisis Metode K-Nearest Neighbors (K-NN) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 3(2), 106-112.