Klasifikasi Gizi Lansia Menggunakan Metode Naïve Bayes Classifier
Abstract
Elderly people are a group that is vulnerable to experiencing various problems in terms of nutrition and health caused by changes in eating patterns. Nutritional status affects the independence of an elderly person, where good nutritional status means less dependence on other people and vice versa. It is necessary to treat malnutrition or malnutrition as early as possible, one of which is by having an elderly posyandu. Posyandu for the elderly as a community service provides services and assistance in special health for the elderly, by regularly recording, controlling and reviewing the medical records of the elderly in a document. The data processing method in this research uses the Naïve Bayes method, where the data used comes from the medical records of the elderly and then used as a reference as to whether the elderly have good nutrition or are malnourished and require further action. Medical record documents play an important role in posyandu services for the elderly, so that medical record documents should be digitally based and systematic in recommending the nutritional status of the elderly. The Naïve Bayes algorithm is an algorithm that can help in classifying data in diagnosis using criteria for the condition of elderly patients. Naïve Bayes also has precise accuracy when implemented in applications that have databases with large data and makes it easier for users to interpret the results. This is proven by this research which produces an accuracy value of 91% with the data used as a sample of 110 elderly patients. The system design aims to help users as posyandu cadres in knowing whether the condition of the elderly is good, whether the elderly are at risk of malnutrition and provide treatment that is appropriate to the condition of elderly patients as well as assisting the Posbindu PTM in transforming documents into computerized ones.
Downloads
References
A. N. I. Karomah, “Peran posyandu lansia dalam meningkatkan kesejahteraan lanjut usia di posyandu lansia sejahtera kelurahan pasirmuncang,” vol. 2, no. 2, 2017.
R. R. Wardhani and S. K. Nisa, “Pengaruh Pemberian Dynamic Neuromuscular Stabilization untuk Meningkatkan Keseimbangan pada Lansia; Narrative Review,” FISIO MU Physiother. Evidences, vol. 4, no. 1, pp. 41–50, 2023, doi: 10.23917/fisiomu.v4i1.19839.
S. M. Kiik, J. Sahar, and H. Permatasari, “Peningkatan Kualitas Hidup Lanjut Usia (Lansia) Di Kota Depok Dengan Latihan Keseimbangan,” J. Keperawatan Indones., vol. 21, no. 2, pp. 109–116, 2018, doi: 10.7454/jki.v21i2.584.
S. Afifah and W. O. Asmawati, “Layanan Posyandu Lansia Dalam Upaya Meningkatkan,” vol. 1, no. 5, pp. 1379–1391, 2023.
I. Irfana et al., “Sosialisasi dan Pemanfaatan Rumah Sehat Lanjut Usia ’Aisyiyah,” J. Altifani Penelit. dan Pengabdi. Kpd. Masy., vol. 3, no. 6, pp. 783–792, 2023, doi: 10.59395/altifani.v3i6.504.
A. Almeina et al., “Rumah sehat lansia di kubu raya,” vol. 12, no. 1, pp. 131–145, 2024.
D. Ervira Puspaningtyas and N. Desy Putriningtyas, “Deteksi Masalah Kesehatan Bagi Lanjut Usia Kelurahan Pakuncen Kecamatan Wirobrajan,” Ilmu Gizi Indones., vol. 01, no. 01, pp. 2580–491, 2017.
A. Alfyanita, R. Dinda Martini, and H. Kadri, “Hubungan Tingkat Kemandirian dalam Melakukan Aktivitas Kehidupan Sehari-Hari dan Status Gizi pada Usia Lanjut di Panti Sosial Tresna Werdha Sabai Nan Aluih Sicincin (Relationship Between the Level of Independence in Carrying Out Activity Daily Living and ,” J. Kesehat. Andalas, vol. 5, no. 1, pp. 201–208, 2016.
J. Zeniarja, K. Widia, and R. R. Sani, “Penerapan Algoritma Naive Bayes dan Forward Selection dalam Pengklasifikasian Status Gizi Stunting pada Puskesmas Pandanaran Semarang,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 1–9, 2020, doi: 10.33633/joins.v5i1.2745.
D. Watratan, A.F; Puspita.A; Moeis, “IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.
M. F. Nugroho and S. Wibowo, “Fitur Seleksi Forward Selection Untuk Menetukan Atribut Yang Berpengaruh Pada Klasifikasi Kelulusan Mahasiswa Fakultas Ilmu Komputer UNAKI Semarang Menggunakan Algoritma Naive Bayes,” J. Inform. Upgris, vol. 3, no. 1, pp. 63–70, 2017, doi: 10.26877/jiu.v3i1.1669.
S. Simatupang, J. Sianturi, “Perancangan Sistem Informasi Pemesanan Tiket Bus pada PO. Handoyo Berbasis Online,” J. Intra Tech, vol. 3, no. 2, pp. 1–15, 2019, doi: 10.37030/jit.v5i2.96.
K. Kartarina, N. K. Sriwinarti, and N. luh P. Juniarti, “Analisis Metode K-Nearest Neighbors (K-NN) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 2, pp. 107–113, 2021, doi: 10.35746/jtim.v3i2.159.
D. Kartini, J. A. Yani Km, and K. Selatan, “Penerapan Data Mining dengan Algoritma Neural Network (Backpropagation) Untuk Prediksi Lama Studi Mahasiswa,” Pros. Semin. Nas. Sisfotek, vol. 3584, pp. 235–241, 2017, [Online]. Available: www.seminar.iaii.or.id
A. Zubair and M. Muksin, “Penerapan Metode Naive Bayes Untuk Klasifikasi Status Gizi (Studi Kasus Di Klinik Bromo Malang),” J. Gaussian, vol. 3, no. 4, pp. 831–838, 2018.
J. S. Pasaribu, “Perancangan Sistem Informasi Perpustakaan Berbasis Web Di Smk Plus Pratama Adi Bandung,” J. Ilm. Teknol. Infomasi Terap., vol. 7, no. 2, pp. 148–158, 2021, doi: 10.33197/jitter.vol7.iss2.2021.552.
Copyright (c) 2024 Kartarina Kartarina, Adelia Azzahrah Hatina, Ria Rismayati, Baiq Fitria Rahmiati, Fatimatuzzahra Fatimatuzzahra, Rahayun Amrullah Husaini
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.