Features Extraction on Cleft Lip Speech Signal using Discrete Wavelet Transformation
Abstract
Cleft is one of the most common birth defects worldwide, including in Indonesia. In Indonesia, there are 1,596 cleft patients, with 50.53% having a cleft lip and palate (CL/P), 24.42% having a cleft lip (CL), and 25.05% having a cleft palate (CP). Individuals with clefts encounter difficulties with resonance and articulation during communication due to dysfunctions in the oral and nasal cavi-ties. This study investigates various types of mother wavelets as feature extractors for cleft speech signals. Five different mother wavelets, namely Symlet order 2, Reverse Biorthogonal order 1.1, Discrete Meyer, Coiflet order 1, and Biorthogonal order 1.1 are analyzed. This work aims to find the best type of mother wavelet. The extracted features are statistical features, such as mean, me-dian, standard deviation, kurtosis, and skewness. The dataset used in this study consists of 200 sound signals from 10 individuals with cleft conditions and 10 normal volunteers. To assess the performance of the extractor, classification is performed using K-Nearest Neighbor (KNN) and K-Fold cross-validation. The experimental results indicate that the Reverse Biorthogonal order 1.1 mother wavelet achieves the highest accuracy compared to other types of mother wavelet, where the accuracy is 93%, with sensitivity and specificity of 94% and 92%, respectively.
Downloads
References
C. I. Alois and R. A. Ruotolo, “An overview of cleft lip and palate,” JAAPA Off. J. Am. Acad. Physician Assist., vol. 33, no. 12, pp. 17–20, 2020, doi: https://doi.org/10.1097/01.jaa.0000721644.06681.06
U. Elfiah, K. -, and S. Wahyudi, “Analisis Kejadian Sumbing Bibir dan Langit: Studi Deskriptif Berdasarkan Tinjauan Geografis,” J. Rekonstr. Dan Estet., vol. 6, no. 1, p. 34, 2021, doi: https://doi.org/10.20473/jre.v6i1.28230.
F. R. Larangeira et al., “Speech nasality and nasometry in cleft lip and palate,” Braz. J. Otorhinolaryngol., vol. 82, no. 3, pp. 326–333, 2016, doi: https://doi.org/10.1016/j.bjorl.2015.05.017.
P. N. Sudro, R. K. Das, R. Sinha, and S. R. Mahadeva Prasanna, “Significance of Data Augmentation for Improving Cleft Lip and Palate Speech Recognition,” in 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Con-ference, APSIPA ASC 2021 - Proceedings, 2021, pp. 484–490.
M. F. Mridha, A. Q. Ohi, M. M. Monowar, Md. A. Hamid, Md. R. Islam, and Y. Watanobe, “U-Vectors: Generating Clus-terable Speaker Embedding from Unlabeled Data,” Appl. Sci., vol. 11, no. 21, p. 10079, Oct. 2021, doi: https://doi.org/10.3390/app112110079.
E. Trianingsih, U. Hasanah, S. Lestariana, A. Setyaningrum, and N. D. Adzkia, “Gangguan Berbahasa pada Remaja Usia Delapan Belas Tahun Akibat Bibir Sumbing : Perspektif Fonologi,” vol. 3, no. 1, 2023, doi: https://doi.org/10.20884/1.iswara.2023.3.1.7206.
S. Hidayat, M. Tajuddin, S. A. A. Yusuf, J. Qudsi, and N. N. Jaya, “Wavelet Detail Coefficient As a Novel Wavelet-Mfcc Features in Text-Dependent Speaker Recognition System,” IIUM Eng. J., vol. 23, no. 1, pp. 68–81, 2022, doi: https://doi.org/10.31436/IIUMEJ.V23I1.1760.
M. Golabbakhsh et al., “Automatic identification of hypernasality in normal and cleft lip and palate patients with acoustic analysis of speech,” J. Acoust. Soc. Am., vol. 141, no. 2, pp. 929–935, Feb. 2017, doi: https://doi.org/10.1121/1.4976056.
A. K. Dubey, S. R. M. Prasanna, and S. Dandapat, “Pitch-Adaptive Front-end Feature for Hypernasality Detection,” in Interspeech 2018, ISCA, Sep. 2018, pp. 372–376. doi: https://doi.org/10.21437/Interspeech.2018-1251.
A. K. Dubey, S. R. M. Prasanna, and S. Dandapat, “Sinusoidal model-based hypernasality detection in cleft palate speech using CVCV sequence,” Speech Commun., vol. 124, pp. 1–12, Nov. 2020, doi: https://doi.org/10.1016/j.specom.2020.08.001.
A. Anggoro, S. Herdjunanto, and R. Hidayat, “MFCC dan KNN untuk Pengenalan Suara Artikulasi P,” Avitec, vol. 2, no. 1, pp. 13–19, 2020, doi: https://doi.org/10.28989/avitec.v2i1.605.
S. E. Shia and T. Jayasree, “Detection of pathological voices using discrete wavelet transform and artificial neural net-works,” in 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur: IEEE, Mar. 2017, pp. 1–6. doi: https://doi.org/10.1109/ITCOSP.2017.8303086.
A. Shrivas et al., “Employing Energy and Statistical Features for Automatic Diagnosis of Voice Disorders,” Diagnostics, vol. 12, no. 11, p. 2758, Nov. 2022, doi: https://doi.org/10.3390/diagnostics12112758.
A. Mirzaei and M. Vali, “Detection of hypernasality from speech signal using group delay and wavelet transform,” in 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran: IEEE, Oct. 2016, pp. 189–193. doi: https://doi.org/10.1109/ICCKE.2016.7802138.
S. A. A. Yusuf and N. Sulistianingsih, “Ekstraksi Fitur Sinyal EKG Myocardial Infarction menggunakan Discrete Wavelet Transformation,” TEKNIMEDIA, vol. 4, no. 1, pp. 38–44, Jun. 2023, doi: https://doi.org/10.46764/teknimedia.v4i1.96.
M. J. Al Dujaili, A. Ebrahimi-Moghadam, and A. Fatlawi, “Speech emotion recognition based on SVM and KNN classi-fications fusion,” Int. J. Electr. Comput. Eng. IJECE, vol. 11, no. 2, p. 1259, Apr. 2021, doi: https://doi.org/10.11591/ijece.v11i2.pp1259-1264.
E. Z. Engin and Ö. Arslan, “Selection of Optimum Mother Wavelet Function for Turkish Phonemes,” Int. J. Appl. Math. Electron. Comput., vol. 7, no. 3, pp. 56–64, Sep. 2019, doi: https://doi.org/10.18100/ijamec.556850.
K. Daqrouq, I. N. Abu-Isbeih, O. Daoud, and E. Khalaf, “An investigation of speech enhancement using wavelet filtering method,” Int. J. Speech Technol., vol. 13, no. 2, pp. 101–115, Jun. 2010, doi: https://doi.org/10.1007/s10772-010-9073-1.
Copyright (c) 2024 Siti Agrippina Alodia Yusuf, Muhammad Imam Dinata
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.