Prediksi Status Gizi Balita Dengan Algoritma K-Nearest Neighbor (KNN) di Puskemas Cakranegara
Abstract
Nutritional status is a picture of a person's physical condition as a reflection of the balance of incoming and outgoing energy by the body. Determining the nutritional status of toddlers is useful for knowing the nutritional status of toddlers based on weight/age (weight for age). The system designed is a system for determining the nutritional status of toddlers using the K-Nearest Neighbor (KNN) method, where the KNN method is a method of classifying or grouping test data whose class is unknown to the nearest neighbors using the distance calculation formula. The variables used in this system are based on anthropometric data or measurements of the human body, namely gender, age and weight. This system is designed and built using the PHP programming language and MySQL database. The results of this system are nutritional status based on body weight for age (weight for age), namely malnutrition, undernutrition, good nutrition, over nutrition. Based on the test results, the accuracy of the success rate for determining the nutritional status of toddlers using the KNN method produced by this system reaches 88.06%.
Downloads
References
A. Deharja, M. W. Santi, M. Yunus, and E. Rachmawati, “Sistem Prototype Klasifikasi Risiko Kehamilan Dengan Algoritma k-Nearest Neighbor (k-NN),” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 1, pp. 66–72, May 2022, doi: 10.35746/JTIM.V4I1.229.
N. E. A. Putri, D. Syauqy, and M. H. H. Ichsan, “Sistem Klasifikasi Status Gizi Bayi dengan Metode K-Nearest Neighbor Berbasis Sistem Embedded,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 933–939, 2017, Accessed: Feb. 20, 2023. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/241
Supariasa, Penilaian Status Gizi, Buku kedok. Jakarta, 2016.
A. Bode and A. Bode, “K-NEAREST NEIGHBOR DENGAN FEATURE SELECTION MENGGUNAKAN BACKWARD ELIMINATION UNTUK PREDIKSI HARGA KOMODITI KOPI ARABIKA,” Ilk. J. Ilm., vol. 9, no. 2, pp. 188–195, Aug. 2017, doi: 10.33096/ilkom.v9i2.139.188-195.
A. Deharja et al., “Technology Acceptance Model to Implementation of Electronic Medical Record (EMR’s) at Clinic of Rumah Sehat Keluarga Jember,” J. Aisyah J. Ilmu Kesehat., vol. 7, no. 4, pp. 1215–1224, Oct. 2022, doi: 10.30604/jika.v7i4.1370.
A. Deharja, M. W. Santi, M. Yunus, and E. Rachmawati, “The Design of Maternal Health Status Report System to Decrease Maternal Mortality in Jember Regency,” in Proceedings of the 2nd International Conference on Social Science, Humanity and Public Health (ICOSHIP 2021), Feb. 2022, vol. 645, pp. 82–85. doi: 10.2991/ASSEHR.K.220207.014.
A. Arisman, Gizi Dalam Daur Kehidupan. Jakarta, 2010.
W. Kurnia, “Implementasi Data Mining Dengan Algoritma Nearest Neighbor Untuk Penentuan Kelayakan Area Pemasaran Baru Produk Baygon Pada PT. SRB Cabang Kabanjahe,” JURIKOM (Jurnal Ris. Komputer), vol. 6, no. 1, pp. 37–44, Feb. 2019, doi: 10.30865/JURIKOM.V6I1.1296.
W. A. Adzani, S. Sasongko, A. B. Kasus, and G. Buruk, “Klasifikasi Status Gizi Balita Menggunakan Metode Backpropagation Dengan Algoritma Levenberg-Marquardt dan Inisialisasi Nguyen Widrow,” J. Masy. Inform., vol. 12, no. 1, pp. 29–43, Aug. 2021, doi: 10.14710/JMASIF.12.1.41020.
T. A. Kurniawan, “Pemodelan Use Case (UML): Evaluasi Terhadap beberapa Kesalahan dalam Praktik,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 1, pp. 77–86, Mar. 2018, doi: 10.25126/JTIIK.201851610.
D. A. Fauziah, A. Maududie, and I. Nuritha, “Klasifikasi Berita Politik Menggunakan Algoritma K-nearst Neighbor,” Berk. SAINSTEK, vol. 6, no. 2, pp. 106–114, Dec. 2018, doi: 10.19184/BST.V6I2.9256.
Copyright (c) 2023 Muhammad Yunus, Ni Kadek Ari Pratiwi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.