Sistem Prototype Klasifikasi Risiko Kehamilan Dengan Algoritma k-Nearest Neighbor (k-NN)

  • Atma Deharja Politeknik Negeri Jember
  • Maya Weka Santi Politeknik Negeri Jember
  • Muhammad Yunus Politeknik Negeri Jember
  • Ervina Rachmawati Politeknik Negeri Jember
Keywords: k-nn, prototype, pregnancy risk, kspr

Abstract

The increasing maternal mortality rate (MMR) in Indonesia in the last two decades has become a serious concern for the government. Moreover, Jember Regency is one of the areas with the highest MMR in East Java. Where in 2018 the AKI of Jember Regency was ranked 10th with an AKI of 114/100,000 KH and was the 5th highest rank in 2019 with 133.4/100,000 KH. The process of recording pregnancy data that is still done manually can also affect the AKI process because it can slow down the decision-making process for pregnant women who are at risk. In this study, the focus is on creating a recording system for pregnant women according to cohort data and equipped with features to support pregnancy risk classification according to the KSPR standard. So that it is expected to provide an early decision on the risk of pregnancy to related parties. The results of the system trial show that the k-NN system developed is able to help the computational process faster by complementing the classification results with an accuracy rate of up to 80%.

Downloads

Download data is not yet available.

References

[1] Menkes, “Rencana Aksiprogramkesehatan Masyarakat,” Kementeri. Kesehat. Republik Indones., pp. 1–23, 2020.
[2] Kementrian Kesehatan, “Profil Kesehatan,” p. 100, 2016.
[3] A. Deharja, M. W. Santi, M. Yunus, and E. Rachmawati, “The Design of Maternal Health Status Report System to Decrease Maternal Mortality in Jember Regency,” Proc. 2nd Int. Conf. Soc. Sci. Humanit. Public Heal. (icosh. 2021), vol. 645, pp. 82–85, Feb. 2022, doi: 10.2991/ASSEHR.K.220207.014.
[4] W. Xing and Y. Bei, “Medical Health Big Data Classification Based on KNN Classification Algorithm,” IEEE Access, vol. 8, pp. 28808–28819, 2020, doi: 10.1109/ACCESS.2019.2955754.
[5] G. D. Widarta, M. A. Cahya Laksana, A. Sulistyono, and W. Purnomo, “Deteksi Dini Risiko Ibu Hamil dengan Kartu Skor Poedji Rochjati dan Pencegahan Faktor Empat Terlambat,” Maj. Obstet. Ginekol., vol. 23, no. 1, p. 28, 2015, doi: 10.20473/mog.v23i1.2100.
[6] “Paradigma Prototyping Untuk Pengembangan Perangkat Lunak – Frieyadie.” http://frieyadie.web.id/paradigma-prototyping-untuk-pengembangan-perangkat-lunak/ (accessed Jun. 28, 2022).
Published
2022-05-25
How to Cite
Deharja, A., Santi, M. W., Yunus, M., & Rachmawati, E. (2022). Sistem Prototype Klasifikasi Risiko Kehamilan Dengan Algoritma k-Nearest Neighbor (k-NN). JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(1), 66-72. https://doi.org/10.35746/jtim.v4i1.229
Section
Articles