Implementasi Model Machine Learning untuk Deteksi Phishing dengan Pendekatan Ekstraksi Fitur yang Dioptimalkan

Penulis

  • Adam Pradana Program Studi Teknik Informatika, Universitas Semarang
  • Susanto Susanto Program Studi Teknik Informatika, Universitas Semarang

DOI:

https://doi.org/10.35746/jtim.v8i1.881

Kata Kunci:

Phishing Detection, Machine Learning, Feature Extraction, URL Detection

Abstrak

Phishing is a common form of cybercrime used by digital criminals to steal sensitive information such as passwords, personal data, and financial details through fake websites designed to re-semble legitimate pages. However, conventional detection methods such as blacklists and manual inspection are currently considered ineffective due to their static nature, often failing to recognize new, evolving and increasingly sophisticated attack patterns. To address this issue, this study developed a machine learning-based phishing detection model focused on improving the accura-cy and efficiency of identifying malicious sites. This model applies an optimized feature extrac-tion technique to enable the system to analyze URL characteristic patterns more comprehensively and targeted. The research dataset was taken from the Kaggle platform, which provides a dataset of phishing and benign URLs with a high reputation. The data was then processed through nor-malization, cleaning, and extraction of important features such as URL structure and domain at-tributes. The classification process was carried out using an ensemble learning approach that combines four popular algorithms: Random Forest, Gradient Boosting, Logistic Regression, and AdaBoost through a soft voting mechanism. The evaluation results show that the proposed model has excellent performance with an accuracy of 98.10%, a precision of 97.81%, a recall of 93.90%, an F1-Score of 95.82%, and a ROC-AUC of 98.62%. These findings confirm that the ensemble ap-proach with optimized features has great potential for application in artificial intelligence-based cybersecurity systems capable of adaptive and real-time phishing detection.

Unduhan

Data unduhan tidak tersedia.

Referensi

L. A. Febrika Ardy, I. Istiqomah, A. E. Ezer, And S. N. Neyman, “Phishing Di Era Media Sosial: Identifikasi Dan Pencegahan Ancaman Di Platform Sosial,” Journal Of Internet And Software Engineering, Vol. 1, No. 4, pp. 1-11, Jun. 2024, https://doi.org/10.47134/Pjise.V1i4.2753.

A. D. Harahap, D. Juardi, And A. S. Y. Irawan, “Rancang Bangun Sistem Pendeteksi Link Phishing Menggunakan Algoritma Random Forest Berbasis Web,” Jurnal Informatika Dan Teknik Elektro Terapan, Vol. 12, No. 3, Aug. 2024, https://doi.org/10.23960/jitet.v12i3.4858.

A. F. Mahmud And S. Wirawan, “Deteksi Phishing Website Menggunakan Machine Learning Metode Klasifi-kasi Phishing Website Detection Using Machine Learning Classification Method,” Sistemasi: Jurnal Sistem In-formasi, vol. 13, no.4, 2024. https://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/3456

H. A. K. Afandi, M. Lazaro Fa. Al-Dzaki, N. Qomariasih, And R. A. Wildana, “Guardsurfing : Ekstensi Browser Sebagai Alat Bantu Deteksi Website Phishing Dengan Metode Klasifikasi Xgboost Untuk Deteksi Url Phishing Berbasis Flask Framework,” Info Kripto, Vol. 19, No. 2, pp. 73–85, Sep. 2025, https://doi.org/10.56706/ik.v19i2.124.

A. F. Nugraha, R. Faticha, A. Aziza, And Y. Pristyanto, “Penerapan Metode Stacking Dan Random Forest Untuk Meningkatkan Kinerja Klasifikasi Pada Proses Deteksi Web Phishing,” Jurnal Infomedia : Teknik Informatika, Multimedia, dan Jaringan, Vol. 7, No. 1, 2022, https://doi.org/10.30811/jim.v7i1.2959.

A. Karim, M. Shahroz, K. Mustofa, S. B. Belhaouari, And S. R. K. Joga, “Phishing Detection System Through Hy-brid Machine Learning Based On Url,” Ieee Access, Vol. 11, pp. 36805–36822, 2023, https://doi.org/10.1109/access.2023.3252366.

Y. A. Alsariera, M. H. Alanazi, Y. Said, And F. Allan, “An Investigation Of Ai-Based Ensemble Methods For The Detection Of Phishing Attacks,” Engineering, Technology And Applied Science Research, Vol. 14, No. 3, pp. 14266–14274, Jun. 2024, https://doi.org/10.48084/Etasr.7267.

F. C. Dalgic, A. S. Bozkir, And M. Aydos, “Phish-Iris: A New Approach For Vision Based Brand Prediction Of Phishing Web Pages Via Compact Visual Descriptors,” In Ismsit 2018 - 2nd International Symposium On Multi-disciplinary Studies And Innovative Technologies, Proceedings, Institute Of Electrical And Electronics Engineers Inc., Dec. 2018. https://doi.org/10.1109/Ismsit.2018.8567299.

F. P. Saputra And O. Suria, “Penggabungan Model Svm Dan Naive Bayes Dengan Pendekatan Soft Voting Untuk Analisis Sentimen Tong Tji Tea House,” Sistemasi: Jurnal Sistem Informasi , vo. 14, no.5, 2025. https://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/5481.

R. Saputra And E. Hartati, “Deteksi Website Phising Menggunakan Algoritma Random Forest Dengan Opti-malisasi Gridsearch,” vol. 14, no. 6, 2025. https://jurnal.univbinainsan.ac.id/index.php/jutim/article/view/2674.

R. Allauddin Mulla, S. Saini, P. Suresh Mane, B. W. Balkhande, M. Eknath Pawar, And K. Arjun Deshmukh, “A Novel Hybrid Approach For Stock Market Index Forecasting Using Cnn-Lstm Fusion Model,” International Journal Of Intelligent Systems And Applications In Engineering, 2024. https://ijisae.org/index.php/ijisae/article/view/4513.

J. D. Duarte Et Al., “Machine Learning For Early Detection Of Phishing Urls In Parked Domains: An Approach Applied To A Financial Institution,” Ieee Access, 2025, https://doi.org/10.1109/Access.2025.3599454.

D. Komalasari, T. B. Kurniawan, D. A. Dewi, M. Z. Zakaria, Z. Abdullah, And A. Alanda, “Phishing Domain Detection Using Machine Learning Algorithms,” Int J Adv Sci Eng Inf Technol, Vol. 15, No. 1, Pp. 318–327, Feb. 2025, https://doi.org10.18517/ijaseit.15.1.12553.

Z. Z. Hulaifah Al Abrori And E. R. Subhiyakto, “Analisis Komparatif Akurasi Prediksi Kanker Payudara Menggunakan Algoritma Random Forest Dan Logistic Regression,” Jurnal Algoritma, Vol. 22, No. 1, Pp. 300–311, May 2025, https://doi.org/10.33364/algoritma/v.22-1.2164.

R. Nurcahyo, F. Tanjung, And S. Rahman, “Meningkatkan Deteksi Email Phising Melalui Pendekatan SVM Yang Dioptimalkan NLP,” 2025. https://repositori.uma.ac.id/jspui/handle/123456789/27660.

R. Fauzan, A. V. Vitianingsih, D. Cahyono, A. L. Maukar, And Y. A. B. Suprio, “Penerapan Algoritma Klasifikasi Pada Machine Learning Untuk Deteksi Phishing,” Malcom: Indonesian Journal Of Machine Learning And Comput-er Science, Vol. 5, No. 2, Pp. 531–540, Mar. 2025, https://doi.org/10.57152/malcom.v5i2.1968.

Y. A. Alsariera, M. H. Alanazi, Y. Said, And F. Allan, “An Investigation Of Ai-Based Ensemble Methods For The Detection Of Phishing Attacks,” Engineering, Technology And Applied Science Research, Vol. 14, No. 3, Pp. 14266–14274, Jun. 2024, https://doi.org/10.48084/etasr.7267.

V. A. Windarni, A. F. Nugraha, S. T. A. Ramadhani, D. A. Istiqomah, F. M. Puri, And A. Setiawan, “Deteksi Web-site Phishing Menggunakan Teknik Filter Pada Model Machine Learning,” Information System Journal, Vol. 6, No. 01, Aug. 2023, https://Doi.Org/10.24076/Infosjournal.2023v6i01.1268.

Diterbitkan

2026-01-03

Terbitan

Bagian

Articles

Cara Mengutip

[1]
A. Pradana dan S. Susanto, “Implementasi Model Machine Learning untuk Deteksi Phishing dengan Pendekatan Ekstraksi Fitur yang Dioptimalkan”, jtim, vol. 8, no. 1, hlm. 27–40, Jan 2026, doi: 10.35746/jtim.v8i1.881.

Artikel paling banyak dibaca berdasarkan penulis yang sama