Analisis Prediksi Penjualan Isi Ulang Air Galon menggunakan Metode LSTM dan SARIMA

Penulis

  • Ulfarida Miftakhul Jannah Program Studi Sistem Informasi, Universitas Duta Bangsa Surakarta
  • Nurmalitasari Nurmalitasari Program Studi Sistem Informasi, Universitas Duta Bangsa Surakarta
  • Ridwan Dwi Irawan Program Studi Sistem Informasi, Universitas Duta Bangsa Surakarta

DOI:

https://doi.org/10.35746/jtim.v7i3.802

Kata Kunci:

Sales Forecast, LSTM, SARIMA, Time Series, Refillable Drinking Water

Abstrak

Refillable drinking water depots often face challenges in dealing with unpredictable customer demand on a daily basis. This uncertainty complicates the process of stock management, production planning, and overall operations. Without accurate sales forecasts, depots risk losing potential sales and experiencing a decline in service quality to customers. Therefore, a solution is needed that can accurately predict daily sales. The first step in this research is to collect relevant data. Once the data is available, pre-processing is conducted to prepare the data before entering the modeling process. The Long Short-Term Memory (LSTM) model has the advantage of remembering historical patterns in time series data. Meanwhile, the Seasonal Autoregressive Integrated Moving Average (SARIMA) model is an extension of ARIMA that can handle data with seasonal characteristics. In this study, the LSTM model demonstrated better performance than SARIMA. This is evidenced by the performance evaluation values: MAPE of 9.54%, RMSE of 0.17, and MAE of 0.14 for the LSTM model, which are lower than MAPE of 10.51%, RMSE of 0.19, and MAE of 0.16 for SARIMA. These values indicate that LSTM is capable of providing more accurate prediction results. Based on these results, it can be concluded that the LSTM model is more effective and recommended for use in predicting daily sales of refillable water at the Manshurin Water depot

Unduhan

Data unduhan tidak tersedia.

Referensi

Rupisiay, V. N. Pelletimu, A. M. Nyawikuhy, H. M. Detek, N. N. I. Salampessy, and O. H. Nendissa, “Analisis Peramalan Permintaan Pada Depot Air Minum Isi Ulang Menggunakan Metode Least Square,” J. Tagalaya Pengabdi. Kpd. Masy., vol. 1, no. 3, pp. 257–262, Aug. 2024, https://doi.org/10.71315/jtpkm.v1i3.59

K. Sussolaikah, P. Jayadi, and D. Andrianto Putra, “Prediksi Penjualan Harian dengan Menggunakan Metode Trend Moment pada Depot Air Minum Isi Ulang,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, pp. 1953–1961, 2024, https://djournals.com/klik/article/view/1629

H. P. Hutrim and L. Bachtiar, “Aplikasi Pendukung Keputusan Prediksi Penjualan Air Minum Isi Ulang Menggunakan Metode Trend Moment,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 11, no. 3, p. 583, 2022, https://doi.org/10.35889/jutisi.v11i3.948

T. Falatouri, F. Darbanian, P. Brandtner, and C. Udokwu, “Predictive Analytics for Demand Forecasting - A Comparison of SARIMA and LSTM in Retail SCM,” Procedia Comput. Sci., vol. 200, no. 2019, pp. 993–1003, 2022, https://doi.org/10.1016/j.procs.2022.01.298

Y. Zhao, “E-Commerce Demand Forecasting Using SARIMA Model and K-means Clustering Analysis,” J. Innov. Dev., vol. 7, no. 1, pp. 1–6, 2024, https://doi.org/10.54097/ctfb0379

K. Y. Choong et al., “Application of SARIMA model in forecasting vegetable price in Malaysia: E-commerce platform domain,” AIP Conf. Proc., vol. 2898, no. 1, 2024, https://doi.org/10.1063/5.0196278

Y. Angraini et al., “Comparative Analysis of ARIMA and LSTM Methods for Sea Surface Temperature Forecasting in the Sunda Strait,” J. Mat. Stat. dan Komputasi, vol. 21, no. 3, pp. 868–885, May 2025, https://doi.org/10.20956/j.v21i3.42565

M. I. Anshory, Y. Priyandari, and Y. Yuniaristanto, “Peramalan Penjualan Sediaan Farmasi Menggunakan Long Short-term Memory: Studi Kasus pada Apotik Suganda,” Performa Media Ilm. Tek. Ind., vol. 19, no. 2, pp. 159–174, 2020, https://doi.org/10.20961/performa.19.2.45962

E. S. Putri and M. Sadikin, “Prediksi Penjualan Produk Untuk Mengestimasi Kebutuhan Bahan Baku Menggunakan Perbandingan Algoritma LSTM dan ARIMA,” Format J. Ilm. Tek. Inform., vol. 10, no. 2, p. 162, 2021, https://doi.org/10.22441/format.2021.v10.i2.007

S. I. N. Suwandi, Raras Tyasnurita, and Hanifan Muhayat, “Peramalan Emisi Karbon Menggunakan Metode SARIMA dan LSTM,” J. Comput. Sci. Informatics Eng., vol. 6, no. 1, pp. 73–80, 2022, https://doi.org/10.29303/jcosine.v6i1.436

Muhammad Rais Ramadhani, Nurmalitasari, and Nurchim, “Pengembangan Model Prediksi Penjualan Ice Cream UMKM Jogja Menggunakan Metode Autoregressive,” J. Deriv. J. Mat. dan Pendidik. Mat., vol. 11, no. 2, pp. 113–122, 2024, https://doi.org/10.31316/jderivat.v10i2.6289

T. A. Faisal Muhammad and M. I. Irawan, “Implementasi Long Short-Term Memory (LSTM) untuk Prediksi Intensitas Curah Hujan (Studi Kasus: Kabupaten Malang),” J. Sains dan Seni ITS, vol. 12, no. 1, May 2023, https://doi.org/10.12962/j23373520.v12i1.106892

Nendi Sunendar, Harjono P. Putro, and Rizki Hesananda, “Prediksi Penjualan Aerosol Menggunakan Algoritma ARIMA, LSTM Dan GRU,” INSOLOGI J. Sains dan Teknol., vol. 4, no. 1, pp. 113–126, Feb. 2025, https://doi.org/10.55123/insologi.v4i1.4868

Marisa, La Pimpi, and Alfian, “ANALISIS METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA) DAN PENERAPANNYA UNTUK MERAMALKAN PENJUALAN MOTOR YAMAHA DI INDONESIA,” J. Mat. Komputasi dan Stat., vol. 5, no. 1, pp. 848–856, Apr. 2025, https://doi.org/10.33772/jmks.v5i1.117

I. Fitriani, Prizka Rismawati Arum, and S. Amri, “Pemodelan Seasonal Autoregressive Integrated Moving Average (SARIMA) untuk Meramalkan Volume Angkutan Barang Kereta Api di Pulau Jawa Tahun 2021,” J. Data Insights, vol. 2, no. 1, pp. 26–35, Jun. 2024, https://doi.org/10.26714/jodi.v2i1.167

L. Sarifah, S. Kamilah, and S. Khotijah, “Penerapan Metode Single Moving Average Dalam Memprediksi Jumlah Penduduk Miskin Pada Perencanaan Pembangunan Daerah Kabupaten Pamekasan,” Zeta - Math J., vol. 8, no. 2, pp. 47–54, 2023, https://doi.org/10.31102/zeta.2023.8.2.47-54

W. I. Butarbutar et al., “Peramalan Harga Taksiran Emas Dan Uang Pinjaman Pada Pt. Pegadaian Cabang Passo Dengan Menggunakan Metode Double Moving Average,” Var. J. Stat. Its Appl., vol. 5, no. 1, pp. 1–12, 2023, https://doi.org/10.30598/variancevol5iss1page1-12

A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, May 2023, https://doi.org/10.24246/juses.v6i1p34-43

R. Al Kiramy, I. Permana, A. Marsal, M. R. Munzir, and M. Megawati, “Perbandingan Performa Algoritma RNN dan LSTM dalam Prediksi Jumlah Jamaah Umrah pada PT. Hajar Aswad,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1224–1234, Jul. 2024, https://doi.org/10.57152/malcom.v4i4.1373

A. R. Wijaya, “Model Prediksi Data Harga Minyak Mentah Dunia Dengan Metode Exponential Smoothing,” Bul. Ilm. Math. Stat. dan Ter., vol. 12, no. 1, pp. 21–28, 2023, https://jurnal.untan.ac.id/index.php/jbmstr/article/viewFile/61977

I. M. Andika Surya, T. A. Cahyanto, and L. A. Muharom, “Deep Learning dengan Teknik Early Stopping untuk Mendeteksi Malware pada Perangkat IoT,” J. Teknol. Inf. dan Ilmu Komput., vol. 12, no. 1, pp. 21–30, Feb. 2025, https://doi.org/10.25126/jtiik.2025128267

Diterbitkan

2025-08-19

Terbitan

Bagian

Articles

Cara Mengutip

[1]
U. M. Jannah, N. Nurmalitasari, dan R. D. Irawan, “Analisis Prediksi Penjualan Isi Ulang Air Galon menggunakan Metode LSTM dan SARIMA”, jtim, vol. 7, no. 3, hlm. 626–639, Agu 2025, doi: 10.35746/jtim.v7i3.802.