Implementasi Arsitektur Deep Convolutional Neural Network (CNN) dengan Transfer Learning untuk Klasifikasi Penyakit Kulit

Penulis

  • I Putu Agus Program Studi Ilmu Komputer, Universitas Bumigora
  • Khasnur Hidjah Program Studi Ilmu Komputer, Universitas Bumigora
  • Neny Sulistianingsih Program Studi Ilmu Komputer, Program Pascasarjana, Universitas Bumigora
  • Galih Hendro Program Studi Ilmu Komputer, Program Pascasarjana, Universiatas Bumigora
  • Syahrir Syahrir Program Studi Rekayasa Perangkat Lunak, Universiats Bumigora

DOI:

https://doi.org/10.35746/jtim.v7i3.734

Kata Kunci:

classification, image, skin, transfer, learning, convolution, evaluation, overfitting

Abstrak

Skin diseases are common health problems that require early diagnosis to prevent serious complications. This study aims to develop an automatic skin disease image classification system using a transfer learning approach based on Convolutional Neural Networks (CNN). Image datasets were obtained from Kaggle and underwent preprocessing stages including resizing, normalization, and augmentation. Four CNN architectures were evaluated: VGG16, ResNet50, MobileNetV2, and InceptionV3, implemented using Python and the Keras library on the Google Colab platform. The dataset was split into three training and testing ratios (90:10, 80:20, and 70:30) to assess the impact of data proportion on model performance. Models were trained by modifying the output layer to match the number of classes, and evaluated using accuracy, precision, recall, F1-score, confusion matrix, and ROC curve metrics. The results show that a 70:30 ratio yielded the most optimal training performance. InceptionV3 achieved the highest validation accuracy at 80.04%, but experienced overfitting, while VGG16 demonstrated better generalization to test data. This study proves that transfer learning with CNN is effective in improving the accuracy of automatic skin disease diagnosis and has the potential to become an efficient diagnostic solution, especially in areas with limited medical infrastructure.

Unduhan

Data unduhan tidak tersedia.

Referensi

Agarwal dan D. Godavarthi, “Skin Disease Classification Using CNN Algorithms,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 9, no. 1, hal. 1–8, 2023, https://doi.org/10.4108/eetpht.9.4039.

D. D. Putri, M. T. Furqon, dan R. S. Perdana, “Klasifikasi Penyakit Kulit Pada Manusia Menggunakan Metode Binary Decision Tree Support Vector Machine ( BDTSVM ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 5, hal. 1912–1920, 2019, https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1425.

N. S. Rahayu, A. D. Puteri, dan L. M. A. Isnaeni, “Hubungan Perilaku Masyarakat Dan Penggunaan Air Sungai Dengan Gangguan Penyakit Kulit Di Desa Kampung Pinang Wilayah Kerja Puskesmas Pantai Raja,” J. Imliah Ilmu Kesehat., vol. 1, no. 3, hal. 2023, 2023.

F. N. Darmawan, E. P. Silmina, dan T. Hardiani, “Sistem Klasifikasi Peyakit Kulit Menggunakan Metode Convolutional Neural Network ( CNN ) Berbasis Website,” Pros. Semin. Nas. LPPM Univ. ’Aisyiyah Yogyakarta, vol. 2, hal. 871–881, 2024, https://proceeding.unisayogya.ac.id/index.php/prosemnaslppm/article/view/796

F. Mahyudin, M. Edward, M. H. Basuki, dan Y. A. Barri, “Diagnosis dan Terapi Tumor Muskuloskeletal,” Sagung Seto, hal. 119–150, 2017.

A. Ajrana, A. Lawi, dan A. M. A. Siddik, “Impelementasi Arsitektur Dengan Pemilihan Model Transfer Learning Convolutional Neural Network Dalam Mengklasifikasikan Penyakit Kanker Kulit,” Pros. Semin. Nas. Tek. Elektro dan Inform., vol. 8, no. 1, hal. 292–297, 2023, https://jurnal.poliupg.ac.id/index.php/sntei/article/view/3628

T. Saputra dan M. E. Al-Rivan, “Analisis Performa ResNet-152 dan AlexNet dalam Klasifikasi Jenis Kanker Kulit,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, hal. 75, 2023, https://doi.org/10.30998/string.v8i1.16464.

S. Supirman, C. Lubis, D. Yuliarto, dan N. J. Perdana, “Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network (Cnn) Dengan Arsitektur Vgg16,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 8, no. 1, hal. 135–140, 2023, https://doi.org/10.51876/simtek.v8i1.217.

W. M. Pradnya Dhuhita, M. Y. Ubaid, dan A. Baita, “MobileNet V2 Implementation in Skin Cancer Detection,” Ilk. J. Ilm., vol. 15, no. 3, hal. 498–506, Des 2023, https://doi.org/10.33096/ilkom.v15i3.1702.498-506.

T. O. Saputra dan D. Alamsyah, “Klasifikasi Penyakit Cacar Monyet Menggunakan,” Mdp Student Conf., hal. 179–184, 2023, https://doi.org/10.35957/mdp-sc.v2i1.4400.

Amania Salwa Ahla, Sri Mulyono, dan Sam Farisa Chaerul Haviana, “Klasifikasi Jenis Jerawat Wajah Menggunakan Arsitektur Inception V3,” J. Ilm. Sultan Agung, no. September, hal. 738–752, 2023, https://jurnal.unissula.ac.id/index.php/JIMU/article/view/33631.

A. E. Putra, M. F. Naufal, dan V. R. Prasetyo, “Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning,” J. Edukasi dan Penelit. Inform., vol. 9, no. 1, hal. 12, 2023, https://doi.org/10.26418/jp.v9i1.58186.

C. A. Sanjaya, M. Waluyo, dan T. Industri, “ANALISIS PERBANDINGAN METODE TRANSFER LEARNING DENSENET201 DAN VGG-19 TERHADAP,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 1, 2025, http://dx.doi.org/10.23960/jitet.v13i1.5810.

F. Marpaung, F. Aulia, dan R. C. Nabila, Computer Vision Dan Pengolahan Citra Digital. 2022. [Daring]. Tersedia pada: www.pustakaaksara.co.id

A. Dhini Septhya, Rahmaddeni, Susanti, “Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Penyakit Kanker Kulit,” Indones. J. Comput. Sci., vol. 13, no. 4, hal. 6590–6600, 2024, https://doi.org/10.33022/ijcs.v13i4.4262.

D. A. Agustina, “Klasifikasi Citra Jenis Kulit Wajah Dengan Algoritma Convolutional Neural Network (Cnn) Resnet-50,” J. Ris. Sist. Inf., vol. 1, no. 3, hal. 01–07, 2024, https://doi.org/10.69714/13sbby24.

N. I. Khani dan S. Rakasiwi, “Penerepan Convolutional Neural Network dengan ResNet-50 untuk Klasifikasi Penyakit Kulit Wajah Efektif,” J. Pendidik. Inform., vol. 9, no. 1, hal. 217–225, 2025, https://doi.org/10.29408/edumatic.v9i1.29572.

A. ANHAR dan R. A. PUTRA, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 2, hal. 466, 2023, https://doi.org/10.26760/elkomika.v11i2.466.

R. FATURRAHMAN, Y. S. HARIYANI, dan S. HADIYOSO, “Klasifikasi Jajanan Tradisional Indonesia berbasis Deep Learning dan Metode Transfer Learning,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 4, hal. 945, 2023, https://doi.org/10.26760/elkomika.v11i4.945.

I. Mustikasari, “Identifikasi Kanker Kulit Melanoma Berbasis Inception V3 Menggunakan Pra-Pemrosesan dan Augmentasi Data pada Dataset Citra Kulit,” Telkom Univ., vol. 10, no. 5, hal. 4170–4176, 2023, https://repository.telkomuniversity.ac.id/pustaka/files/196591/jurnal_eproc/identifikasi-kanker-kulit-melanoma-berbasis-inception-v3-menggunakan-pra-pemrosesan-dan-augmentasi-data-pada-dataset-citra-kulit.pdf

A. W. Kosman, Y. Wahyuningsih, dan F. Mahendrasusila, “Pengujian Metode Inception V3 dalam Mengidentifikasi Penyakit Kanker Kulit,” J. Teknlogi Inform. dan Komput., vol. 10, no. 1, hal. 136–146, 2024, https://doi.org/10.37012/jtik.v10i1.1940.

O. Sharif, M. M. Hoque, A. S. M. Kayes, R. Nowrozy, dan I. H. Sarker, “applied sciences Learning Techniques,” hal. 1–23, 2020.

A. M. Ibrahim, M. Elbasheir, S. Badawi, A. Mohammed, dan A. F. M. Alalmin, “Skin Cancer Classification Using Transfer Learning by VGG16 Architecture (Case Study on Kaggle Dataset),” J. Intell. Learn. Syst. Appl., vol. 15, no. 03, hal. 67–75, 2023, https://doi.org/10.4236/jilsa.2023.153005.

Diterbitkan

2025-06-23

Terbitan

Bagian

Articles

Cara Mengutip

[1]
I. P. Agus, K. Hidjah, N. Sulistianingsih, G. Hendro, dan S. Syahrir, “Implementasi Arsitektur Deep Convolutional Neural Network (CNN) dengan Transfer Learning untuk Klasifikasi Penyakit Kulit”, jtim, vol. 7, no. 3, hlm. 461–477, Jun 2025, doi: 10.35746/jtim.v7i3.734.

Artikel paling banyak dibaca berdasarkan penulis yang sama