JTIM : Jurnal Teknologi Informasi dan
Multimedia

p-ISSN : 2715-2529

e-ISSN : 2684-9151
https://journal.sekawan-org.id/index.php/jtim

Acoustic Analysis on Cleft Lip Speech Signal

Siti Agrippina Alodia Yusuf ¥, Nani Sulistianingsih 1, Muhammad Imam Dinata  Syahroni Hidayat 2and Jo-

elianto Darmawan 1

Citation: Yusuf, S. A. A, Su-
listianingsih, N.; Dinata, M. L;, Hi-
dayat, S.; and Darmawan, J. 1 (2025).
Acoustic Analysis on Cleft Lip
JTIM:
Teknologi Informasi Dan Multime-
dia, 7(4), 744-753.
https://doi.org/10.35746/jtim.v7i4.766

Speech  Signal. Jurnal

Received: 11-06-2025
Revised: 11-07-2025
Accepted: 27-08-2025

Copyright: © 2025 by the authors.
This work is licensed under a
Creative ~Commons Attribution-
ShareAlike 4.0 International License.
(https://creativecommons.org/license

s/by-sa/4.0/).

1 Department of Information Systems and Technology, Universitas Muhammadiyah Mataram, Indonesia
2 Department of Electrical Engineering, Universitas Negeri Semarang, Indonesia

* Correspondence: alodiaysf@gmail.com

Abstract: Cleft conditions significantly disrupt phonetic articulation, leading to hypernasality and
irregular resonance characteristics. In this study, the formant analysis of normal and cleft speech is
presented, with the aim of investigating acoustic differences in formant frequencies between cleft
and normal speech using real-word utterances, focusing on the articulation of plosive consonants
and resonance variability. The dataset consisted of 280 speech signals (140 cleft and 140 normal)
uttering word /paku/. The speech signals were resampled to 16kHz and the silence in the speech
was removed, next stage was followed by extracting the first three formants using the Burg algo-
rithm. Statistical analysis revealed that the value of F1 and F2 in cleft speech were higher, alongside
greater variability in formant distribution. Further analysis of plosive articulation highlighted irreg-
ular formant transition in cleft speech, indicating compromised intraoral pressure control. Addi-
tionally, a moderate negative correlation (r =-0.423, p<0.001) between F1 and F3 suggests a spectral
pattern indicative of hypernasality. This finding underscores the potential of formant-based acous-
tic features as objective markers for early clinical assessment and provides a foundation for the de-
velopment of diagnostic models in cleft speech research.
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1. Introduction

Cleft anomalies are among the most prevalent congenital conditions worldwide,
commonly categorized as cleft lip (CL), cleft palate (CLP), or a combination of both (CL/P)
[1]. A cleft palate is characterized by an opening in the roof of the mouth, forming an
abnormal connection between the oral and nasal cavities [2]. In contrast, a cleft lip results
from the incomplete fusion of the medial and nasal prominences with the maxillary prom-
inence, leading to a separation in the upper lip [3]. Individuals affected by these conditions
often experience a range of speech disorders, including hypernasality, hyponasality, con-
sonant production errors, and voice disorders [4]. Hypernasality refers to an abnormal
increase in nasal resonance during speech, typically caused by velopharyngeal insuffi-
ciency (VPI), where the velum fails to close properly, allowing air to escape through the
nasal cavity during phonation [5]. On the other hand, hyponasality is marked by reduced
nasal resonance, in which nasal sounds such as /m/ and /n/ are perceived as /b/ and /d/,
often due to nasal obstruction or velopharyngeal dysfunction [6]. Nasal air emission, de-
fined as the audible release of air through the nose during speech—particularly during
the articulation of pressure consonants—is frequently associated with insufficient
velopharyngeal closure [7]. Surgical intervention is often required early in life to restore
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anatomical structure, though multiple surgeries may be necessary depending on the
cleft’s severity [8]. Post-operative assessment by speech-language pathologists (SLPs) is
crucial; however, limited availability of SLPs, particularly in rural areas, and the high cost
of services pose substantial barriers to care.

Automatic speech recognition (ASR) is a technology designed to convert spoken lan-
guage into text by processing acoustic signals [9], [10], and it is applied across various
domains, including mobile interfaces, human-computer interaction, accent and language
detection, voice biometrics, healthcare, and transcription systems. ASR systems typically
consist of three core components: feature extraction, which identifies key features in the
speech signal; acoustic modeling, which maps these features to phonetic elements; and
classification, which matches the patterns to known linguistic units [10]. Despite advance-
ments, ASR technologies are limited in their ability to process atypical speech, particularly
cleft-affected speech, due to sparse dataset and high phonetic variability [11], [12]. Such
atypical speech patterns, particularly in individual with cleft condition, are under-
presented in current ASR research.

Recent studies have begun to address cleft speech processing, particularly focusing
on intelligibility assessment and hypernasality detection [13], [14]. Song et al. [15] devel-
oped a method for estimating hypernasality by fine-tuning an ASR encoder on cleft-spe-
cific speech-to-text datasets, while Wang et al. [16] employed a Long Short-Term Memory-
based Deep Recurrent Neural Network (LSTM-DRNN) to detect hypernasality in sus-
tained vowels /a/, /i/, and /u/. While these methods demonstrate promise, they are primar-
ily dependent on large, labeled datasets and complex deep-learning architectures, which
may not be practical in low-resource or clinical environments where cleft data is scarce.
Moreover, their focus on isolated vowels limits the ecological validity of their models for
connected speech or phonetically complex words.

In contrast, this study uses formant-based acoustic analysis to characterize cleft
speech. Specifically, we analyze the formant trajectories of the word /paku/, which was
deliberately selected due to its inclusion of two voiceless plosive consonants (/p/ and /k/),
making it phonetically sensitive to articulatory impairments common in cleft conditions.
Plosive consonants require complete intraoral pressure build-up and precise velopharyn-
geal closure, which are often compromised in individuals with cleft palate [17]. This
makes /paku/ an effective probe for detecting articulatory instability and resonance devia-
tion in cleft speech. Unlike deep learning-based methods, our approach emphasizes inter-
pretable acoustic features of formant frequencies (F1, F2, F3), allowing for direct insights
into the physiological basis of speech differences. Therefore, this research aims to perform
an acoustic analysis of cleft speech by examining the statistical distribution and transition
patterns of the first three formants in the word /paku/. This study aims to investigate how
anatomical irregularities in the vocal tract affect speech production in individuals with
cleft conditions. Specifically, it focuses on the articulation of plosive consonants and the
manifestation of hypernasality as acoustic deviations in formant structure.

2. Materials and Methods

This study employs a quantitative, comparative research approach to analyze acous-
tic differences between cleft and non-cleft speech. The investigation focuses on examining
the statistical characteristics of the first three formant frequencies (F1, F2, F3) as key acous-
ticindicators. The methodology includes systematic stages of dataset acquisition, pre-pro-
cessing, feature extraction, and statistical evaluation to ensure analytical rigor and repro-
ducibility. The methods are provided in Figure 1.
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Figure 1. Methodology

2.1. Dataset Acquisition

Speech data were collected from individuals with cleft lip (CL), cleft palate (CP), or
both (CL/P), including those who had undergone reparative surgery. Each participant was
instructed to pronounce the word /paku/ repeatedly for 10 to 15 iterations.The word was
chosen due to the inclusion of two voiceless plosives within a simple syllabic structure,
thus making /paku/ phonetically ideal for revealing articulatory challenges in cleft speech.
The dataset is balanced, consisting of 140 utterances each from speakers with cleft condi-
tions and control (non-cleft) speakers. Recordings were captured using mobile phone ap-
plications in both open and closed environments, reflecting the variability and accessibil-
ity constraints commonly found in real-world clinical and remote settings. To mitigate
environmental effects, energy-based silence trimming was applied, and only utterances
with clear acoustic energy profiles and minimal background interference were included
in the analysis. Speech durations ranged between 0.9 and 1.2 seconds per utterance.

2.2. Pre-processing

In this stage, all speech signals were standardized by applying resampling to 16 kHz.
This step is essential for uniform frame segmentation and accurate spectral analysis. Fol-
lowing resampling, the recordings underwent energy-based silence removal to improve
the reliability of the acoustic analysis. This technique identifies and eliminates non-speech
segments—especially leading and trailing silences—based on the Root Mean Square
(RMS) energy computed across overlapping frames (typically 20-30 ms). RMS values
were converted to a decibel (dB) scale, and a threshold of 20 dB was applied to detect
active speech regions [18]. This pre-processing step improves the signal-to-noise ratio and
reduces the influence of environmental noise and silence on formant estimation.

2.3. Feature Extraction

In this stage, the Burg algorithm was employed to extract the formants. This linear
prediction method models the speech signal with an autoregressive (AR) model, which
posits that the speech signal can be expressed as a linear combination of its previous val-
ues. The algorithm estimates the parameters of the predictive filter, which are then used
to compute the linear prediction spectrum. The peaks in this spectrum correspond to the
formant frequencies [19], [20]. The algorithm divides the audio signal into short, overlap-
ping frames to account for the quasi-stationary nature of speech. For each frame, the Burg
method recursively minimizes both forward and backward prediction errors to estimate
the LPC coefficients [21]. Unlike other LPC methods, Burg guarantees filter stability and
avoids spectral leakage, making it ideal for formant tracking [22]. In this study, we set the
Burg method for formant extraction using Praat’s default configuration via the
Parselmouth library, with specific adjustments to the maximum number of formants and
the maximum formant frequency. The number of formants was limited to five, with the
maximum formant frequency was set to 5000 Hz, which is commonly suitable for adult
speech analysis [23]. Other parameters such as the analysis time step (0.01 seconds), win-
dow length (0.025 seconds), and pre-emphasis frequency (50 Hz)—were also retained as
defaults, because they are optimized for capturing quasi-stationary characteristics of
speech frames. These settings allow for consistent temporal and spectral resolution,
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ensuring that the formant trajectories of cleft and non-cleft speech samples are comparable
and analytically robust.

2.4. Statistical Analysis

To assess acoustic differences between cleft and non-cleft speech, the extracted for-
mant frequencies (F1, F2, and F3) were analyzed using a structured statistical framework.
This evaluation consisted of four main components: descriptive statistics, statistical sig-
nificance testing, formant transition analysis of plosive consonants, and correlation anal-
ysis related to hypernasality. First, descriptive statistics were calculated to summarize the
central tendency and variability of each formant, including measures such as mean, stand-
ard deviation, minimum, maximum, and interquartile range. The Shapiro-Wilk test was
applied to examine the normality of the formant distributions. Based on this assessment,
a non-parametric approach was selected. Specifically, the Mann-Whitney U test was em-
ployed to compare formant frequency distributions between cleft and non-cleft groups
due to its robustness in handling non-normally distributed data.

In addition to static formant values, formant transitions during plosive consonant
articulation were examined. This analysis focused on the voiceless plosives /p/ and /k/ in
the word /paku/. Five utterances were randomly selected from each group, and variability
in F2 and F3 was measured using standard deviation and range, allowing for quantifica-
tion of articulatory consistency during plosive production. To investigate acoustic pat-
terns associated with hypernasality, a correlation analysis was conducted within the cleft
speech group. The linear relationship between F1 and F3 was analyzed using Pearson’s
correlation coefficient, which served as a proxy measure for detecting spectral alterations
related to nasal resonance coupling.

3. Results

This section presents the results of the acoustic analysis, structured around descrip-
tive statistics, statistical significance testing, phonetic features of plosive consonants, and
evidence of hypernasality based on formant relationships. The analysis was conducted on
280 speech signals (140 cleft and 140 normal), resampled to 16 kHz, and pre-processed for
silence removal.

3.1. Statistical Description of Formants

Table 1 summarizes the central tendencies and variability of the first three for-
mants (F1, F2, F3) for cleft and normal speech samples.

Table 1. Statistical descriptions of formant frequencies (Hz) by Condition

Formant Statistic Normal (Hz) Cleft (Hz)
Mean 584.25 638.63
Std Dev 56.39 95.20
Min 461.91 465.76
F1 25% Quartile 534.75 568.39
50% Quartile 584.86 640.63
75% Quartile 625.58 674.54
699.62 1058.77
Max
Mean 1178.20 1329.14
Std Dev 133.60 269.17
. ioas 5 12455
0, : . )
N Eg; Sﬁiﬁﬁi 1168.76 1322.59
75% Quartile 1199.06 1486.66
1593.78 2038.38
Max

F3 Mean 2260.72 2250.39
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Formant Statistic Normal (Hz) Cleft (Hz)
Std Dev 187.44 331.12
Min 1896.34 1820.01
25% Quartile 2126.66 1990.36
50% Quartile 2198.67 2157.69
75% Quartile 2408.05 2614.41
Max 2843.11 2940.42

On average, cleft speech exhibited higher F1 and F2 values compared to normal
speech, with a greater standard deviation across all three formants, indicating more acous-
tic variability. Notably, the mean F1 for cleft speech was 638.63 Hz compared to 584.25 Hz
for normal speech, while F2 was 1329.14 Hz in cleft speech versus 1178.20 Hz in normal
speech. F3 values, however, showed a marginal difference (2250.39 Hz in cleft vs 2260.72
Hz in normal), though variability was markedly higher in the cleft group. Boxplots of the
formants distribution (Figure 2) illustrate the broader spread and presence of high-fre-
quency outliers, particularly in the F1 and F2 distributions of cleft speech.

Distribution F1_Hz Distribution F2_Hz Distribution F3_Hz

° 2000
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1000
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Figure 2. Formants distribution (F1, F2, F3) for cleft and normal speech

Figure 2 emphasizes these differences, showing that in F1, the cleft speech signal ex-
hibits a higher median, a broader interquartile range, and a prominent outlier around 1050
Hz, which indicates a more dispersed and elevated distribution. Additionally, the cleft
signal in F2 is characterized by a taller box plot, reflecting greater variability, with an ex-
tended upper whisker surpassing 2000 Hz. On the other hand, the normal speech signal
is more confined, with several outliers appearing above the upper quartile. In F3, both
signals share a similar median, though cleft signals display a broader range. Individuals
with cleft conditions often exhibit significant anatomical variation in the vocal tract, in-
cluding differences in the shape and size of the oral and nasal cavities. These variations
can lead to inconsistent resonance characteristic, resulting in broader formant distribu-
tions [24], [25]. Velopharyngeal insufficiency, in which the soft palate fails to close
properly against the back of the throat during speech affect the acoustic properties of
speech, contributing to variability in formant frequencies [24], [25], [26].

The observed variability in formant distributions aligns with findings by Nikitha et
al. [27], who examined vowel space area (VSA) in children with cleft lip and palate and
reported a progressive reduction in VSA with increasing hypernasality severity. Although
their study used VSA as a global acoustic metric derived from F1 and F2, the increased
dispersion observed in the present study's formant distributions, particularly in F1 and
F2, similarly reflects reduced articulatory precision and stability. Both analyzes indicate
that cleft-affected speech is characterized by imprecise vowel articulation due to underly-
ing anatomical and physiological disruptions. Moreover, while the study employed sus-
tained vowels and CVCV sequences in controlled phonetic contexts, this study analyzed
a real-word utterance (/paku/), incorporating bilabial and plosives in a naturally
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coarticulated speech context. Despite the relatively lower articulatory demands expected
in bilabial contexts such as /p/, the current results showed significant variability in for-
mant distributions even within this phonetic environment. This suggests that natural
speech may reveal articulatory instability more clearly than isolated segments. Addition-
ally, both studies link the findings to common physiological mechanisms, namely
velopharyngeal insufficiency, oral-nasal coupling anomalies, and compensatory articula-
tion strategies, which collectively impact formant production. Therefore, the broader for-
mant variability observed in this study supports and extends previous study’s conclu-
sions by demonstrating similar articulatory-acoustic consequences within a connected
speech context.

3.2. Statistical Significance Testing

To evaluate differences in formant frequencies between cleft and normal speech, the
Shapiro-Wild test was first conducted to assess normality. All formant distribution in both
speaker groups showed significant deviations from normality (p<0.05), therefore the
Mann-Whitney U test was applied for group comparisons. The results are shown in Table
2.

Table 2. Significance test result

Formant p-Value Significance
F1 0.0000270 Significance
F2 0.00188 Significance
EF3 0.0114 Significance

Examining the table, it is evident that there are significant differences across all for-
mants. The p-Values for F1 and F2 reflect highly significant values, suggesting notable
disparities in acoustic distribution likely stemming from variations in articulation and res-
onance due to the cleft's morphological structure. Although F3 also displays a statistically
significant difference, the magnitude of this difference is quite modest, necessitating mild
but observable differences in resonance behavior. In summary, the findings indicate that
individuals with a cleft exhibit altered articulation, leading to distinctive patterns in vocal
acoustics.

3.3. Plosive Consonant Analysis

The word /paku/ contains voiceless plosive /p/ and /k/, which require precise in-
traoral pressure control. Variability in formant transitions during plosive production was
analyzed using the standard deviation and range of F2 and F3. Figure 2 demonstrated the
formant transition of F2 and F3 where five random samples from each group were taken.

Transition of F2 & F3 on Plosive Sound
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Figure 3. F2 and F3 transition trajectories across five utterances per group showing variability dur-
ing plosive production
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As demonstrated by the formant transition in Figure 3, the distribution in individuals
with a cleft condition was broader and more irregular than in those without. This irregu-
larity suggests difficulties in articulation particularly in producing plosive sounds, which
require greater intraoral control. In F2 transition variability for cleft speech, the standard
deviation and range are 269.17 Hz and 1002.04 Hz respectively. Meanwhile, in normal
speech, the standard deviation and range are 133.60 Hz and 667.04 Hz. Furthermore, the
F3 transition variability on cleft and normal speech is 331.12 Hz and 1117.77 Hz, and
187.44 Hz and 944.79 Hz respectively. These results clearly indicate that cleft speech ex-
hibits significantly greater variation in both F2 and F3 transitions. The findings align with
[28], stating that there is differences in F2 and F3 formant values during the production of
voice plosives in children with cleft. Although the current study involves adults, the per-
sistence of such acoustic anomalies suggests that cleft-related articulatory deficits may
extend into adulthood, particularly in the absence of effective early intervention. Moreo-
ver, structural issues such as dental anomalies in cleft patients can lead to altered speech
production which may manifest as irregular formant transition [29], [30]. This finding is
further supported by [31], demonstrating that anatomical variation in the vocal tract con-
tribute to variability in formant frequencies. Their study confirms that differences in the
oral cavity can drive dispersion in F3 patterns. Such anatomical differences are particu-
larly pertinent to the cleft population, where malformations of the oral cavity are fre-
quently observed. Conversely, in the normal group, the formant transition appears con-
sistent, suggesting regular and efficient plosive sound production. Consistent with the
finding of [31], the stability in transitions are likely supported by typical anatomical de-
velopment, which allows for more predictable acoustic outcomes during plosive produc-
tion. Therefore, the present study highlights how structural deviations in cleft speech af-
fect both articulatory precision and the acoustic cues necessary for clear speech percep-
tion.

3.4. Hypernasality Correlation Analysis

Typically, changes in F1, particularly an increase in its amplitude and bandwidth, are
indicative of hypernasality [32], [33]. This rise occurs because the nasal cavity is coupled
with the oral cavity, resulting in additional nasal formants and anti-formant appearing
within the speech spectrum [34], [35]. Additionally, the spectral traits of hypernasality
involve troughs between F2 and F3, attributed to the enhanced acoustic coupling of the
nasal cavity, which influences the spectral envelope and formant configuration. Therefore,
the correlation between F1 and F3 was examined as a proxy for hypernasality. We calcu-
lated Pearson’s correlation coefficient between F1 and F3 for the cleft speech group. The
calculation yielded a moderate negative correlation (r =-0.423, p<0.001) as shown in Figure
4 which aligns with prior findings that associate this spectral behavior with hypernasality
resonance patterns. This moderate inverse realtionship provides a quantifiable acoustic
correlate to hypernasality, supportin gthe development of formant-based detection frame-
works.
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F1 and F3 Correlation on hypernasality
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Figure 4. Scatterplot showing F1-F3 correlation in cleft speech group
4. Conclusions

In this research, we investigated the formant frequencies of the word /paku/ as pro-
duced by speakers with cleft conditions. The experiments demonstrated that a cleft sig-
nificantly impacts vowel formant features, affecting the articulation of plosive consonants
and modifying resonance, which can result in hypernasality. This study offers an acoustic
perspective on how anatomical abnormalities in the oral cavity influence speech quality
and may serve as a foundation for future research, particularly in developing formant-
based methods for robust vocal tract length normalization.
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