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Abstract: Automated unit testing is essential for ensuring the security and reliability of smart con-
tracts, particularly because their immutable nature prevents post-deployment modifications. How-
ever, manually creating test scenarios remains time-consuming, costly, and highly dependent on 
expert knowledge. A potential solution is to utilize AI technology, particularly Large Language 
Models (LLMs), to automatically generate test scenarios. This study fills the research gap in lever-
aging LLM technology in the software testing space by proposing a workflow for automatically 
generating unit test scenarios for blockchain smart contract code using Large Language Models 
(LLMs). The proposed workflow consists of two stages: converting Solidity smart contracts into 
structured Gherkin scenarios and translating those scenarios into executable Hardhat unit test 
scripts. This study proposes an automated workflow using Large Language Models (LLMs) to ad-
dress these challenges. The workflow consists of two stages: con-verting Solidity smart contracts 
into structured Gherkin scenarios and trans-lating those scenarios into executable Hardhat unit test 
scripts. Using the Gemini 2.5 Pro model, the research evaluates three prompting techniques such as 
Chain-of-Thought, Few-Shot, and Role-Based through quantitative analysis based on code coverage 
metrics, including Statements, Branches, Functions, and Lines. The experimental results show that 
Role-Based Prompting achieves the highest average coverage (92.02%), followed by Few-Shot 
Prompting (89.52%), while Chain-of-Thought produces the lowest coverage (78.79%). Role-Based 
Prompting also attains the highest Branch coverage, demonstrating superior capability in capturing 
conditional logic within smart contracts. 
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Abstrak: Pengujian unit otomatis sangat penting untuk memastikan keamanan dan keandalan 
smart contract, terutama karena sifatnya yang tidak dapat diubah untuk mencegah modifikasi 
setelah deployment. Namun, pembuatan skenario pengujian secara manual memakan waktu, biaya, 
dan sangat bergantung pada pengetahuan dan pengalaman penguji. Salah satu pendekatan yang 
dapat dilakukan adalah dengan memanfaatkan teknologi AI terutama Large Language Model (LLM) 
untuk menghasilkan skenario pengujian secara otomatis. Studi ini mengisi celah penelitian dalam 
memanfaatkan teknologi LLM pada ruang lingkup pengujian perangkat lunak dengan men-
gusulkan alur kerja pembuatan skenario pengujian unit untuk kode smart contract blockchain 
secara otomatis menggunakan Large Language Models (LLMs). Alur kerja yang diusulkan dari dua 
tahap: mengonversi smart contract Solidity menjadi skenario Gherkin yang terstruktur dan mener-
jemahkan skenario tersebut menjadi skrip pengujian unit Hardhat yang dapat dieksekusi. 
Penelitian ini menggunakan model Gemini 2.5 Pro dalam mengevaluasi tiga teknik prompting, yaitu 
Chain-of-Thought, Few-Shot, dan Role-Based, melalui analisis kuantitatif berdasarkan metrik cakupan 
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pengujian (test coverage) dengan kriteria Statements, Branch, Functions, dan Lines coverage. Hasil ek-
sperimen menunjukkan bahwa Role-Based Prompting mencapai cakupan rata-rata tertinggi (92,02%), 
diikuti oleh Few-Shot Prompting (89,52%), dan Chain-of-Thought dengan cakupan terendah (78,79%). 
Role-Based Prompting juga mencapai cakupan Branch tertinggi, menunjukkan kemampuan superior 
dalam menangkap logika kondisional dalam smart contract. 

Kata kunci: Metrik Cakupan; Model Bahasa Besar; Rekayasa Prompt; Smart Contract; Pengujian Unit 

 

1. Pendahuluan 

Perkembangan teknologi informasi di era Revolusi Industri 4.0 berlangsung sangat 
pesat dan memberikan dampak signifikan terhadap berbagai sektor, tidak hanya industri, 
tetapi juga bidang ekonomi, keuangan, dan layanan digital [1]. Transformasi ini didorong 
oleh berbagai teknologi baru, salah satunya adalah blockchain dan smart contract, yang 
telah membawa perubahan mendasar terutama dalam sektor Keuangan Terdesentralisasi 
(Decentralized Finance/DeFi). Nilai pasar DeFi bahkan pernah melampaui 180 miliar dolar 
AS, menunjukkan besarnya pengaruh teknologi ini dalam ekosistem finansial modern [2]. 

Blockchain merupakan sistem penyimpanan data terdistribusi berbentuk buku besar 
(ledger) yang direplikasi pada banyak node dalam jaringan tanpa adanya otoritas pusat. 
Setiap transaksi diverifikasi melalui mekanisme konsensus, sehingga data menjadi trans-
paran, aman, dan tahan terhadap manipulasi [3]. Di atas teknologi blockchain, smart con-
tract berperan sebagai program yang secara otomatis mengeksekusi logika tertentu ketika 
kondisi yang telah ditentukan terpenuhi, tanpa memerlukan pihak perantara. 

Smart contract berfungsi sebagai fondasi utama berbagai aplikasi terdesentralisasi 
(decentralized applications/dApps) dan disimpan secara permanen di seluruh node jaringan 
blockchain [4]. Karakteristik utama yang diwarisinya adalah immutability [5] dan trans-
paransi, yang memungkinkan siapa pun di jaringan melihat aturan dan riwayat transaksi 
kontrak [6]. Kedua sifat ini memungkinkan terciptanya sistem yang bersifat self-executing 
dan membangun kepercayaan antar pihak. Dalam pengujian, penggunaan Gherkin se-
bagai domain-specific language dalam pendekatan Behavior-Driven Development (BDD) san-
gat relevan karena mengadopsi struktur Given–When–Then yang mudah dipahami 
sekaligus dapat dieksekusi [7]. 

Salah satu karakteristik utama smart contract adalah immutability, yaitu sifat kode 
yang tidak dapat diubah setelah di-deploy ke jaringan blockchain [5]. Setelah kontrak 
dipublikasikan, seluruh logika di dalamnya menjadi permanen, yang pada satu sisi mem-
berikan jaminan stabilitas, keandalan, dan keamanan tanpa ketergantungan pihak ketiga 
[8]. Namun di sisi lain, sifat ini menimbulkan risiko besar apabila terdapat kesalahan 
logika atau celah keamanan pada saat pengembangan. Beberapa kasus menunjukkan 
dampak fatal dari kurang optimalnya pengujian smart contract. Peretasan The DAO pada 
tahun 2016 menyebabkan kerugian sebesar 3,6 juta Ether akibat adanya kerentanan re-
entrancy yang seharusnya dapat dideteksi lebih awal melalui pengujian yang memadai 
[9]. Insiden serupa juga terjadi pada Wormhole Bridge pada Februari 2022, di mana lebih 
dari 120.000 wETH senilai lebih dari 320 juta dolar AS berhasil dicuri [10]. Peristiwa-per-
istiwa tersebut menegaskan bahwa pengujian smart contract merupakan aspek krusial 
dalam menjaga keamanan dan stabilitas sistem berbasis blockchain. 

Dalam rekayasa perangkat lunak, pengujian, khususnya unit testing, merupakan 
tahapan penting untuk memastikan setiap komponen sistem berfungsi sesuai dengan spe-
sifikasi yang ditentukan [11].  
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Salah satu pendekatan yang mulai dikembangkan untuk meningkatkan efisiensi 
pengujian adalah pemanfaatan kecerdasan buatan, khususnya Large Language Model 
(LLM). LLM merupakan model kecerdasan buatan berskala besar yang terbukti mampu 
mendukung pembuatan kode, deteksi bug, serta penyusunan skenario pengujian secara 
otomatis [12]. Untuk mengoptimalkan hasil yang dihasilkan LLM, digunakan teknik 
prompt engineering, yaitu perancangan instruksi yang strategis agar model menghasilkan 
respons yang relevan, akurat, dan kontekstual [13]. Kualitas prompt berpengaruh lang-
sung terhadap kedalaman penalaran dan relevansi output yang dihasilkan [14]. Dalam 
penelitian ini, digunakan tiga metode utama, yaitu Chain-of-Thought, Few-Shot, dan Role-
Based prompting. Chain-of-Thought mendorong model untuk berpikir secara bertahap se-
hingga meningkatkan performa dalam menyelesaikan masalah kompleks [15], [16]. Few-
Shot prompting menyediakan beberapa contoh singkat untuk membantu model me-
mahami pola dan konteks tugas [15], [16]. Sementara itu, Role-Based prompting menetap-
kan peran tertentu kepada model, seperti QA engineer atau blockchain developer, sehingga 
skenario pengujian yang dihasilkan menjadi lebih terarah, kontekstual, dan presisi [17], 
[18]. 

Sejumlah penelitian telah mengeksplorasi penggunaan LLM dalam pembuatan ske-
nario uji otomatis. Lahbib et al. (2024) mengusulkan pendekatan berbasis LLM dan prompt 
engineering dengan memanfaatkan representasi use case dalam format XML untuk 
menghasilkan test case secara otomatis melalui model seperti ChatGPT dan Gemini [12]. 
Penelitian lain oleh Margarida et al. (2025) mengembangkan alur otomatisasi acceptance 
testing dengan mengonversi user story menjadi skenario Gherkin dan selanjutnya ke da-
lam skrip pengujian menggunakan Cypress [19]. Sementara itu, Zain et al. (2025) mem-
perkenalkan framework E2E-TestGen yang memanfaatkan LLM untuk menghasilkan 
pengujian end-to-end adaptif dengan bantuan object detection, OCR, dan representasi Hy-
brid DOM Dataset (HDD) [20]. Meskipun hasilnya menjanjikan, penelitian-penelitian ter-
sebut belum secara khusus mengkaji efektivitas teknik prompting pada konteks pengujian 
smart contract, terutama dari segi kualitas dan cakupan skenario uji yang dihasilkan. 

Berdasarkan celah penelitian yang telah diidentifikasi, studi ini berfokus pada 
pengembangan metode otomatisasi pembuatan test scenario berbasis Large Language Model 
(LLM) untuk pengujian smart contract, serta melakukan analisis komparatif terhadap 
efektivitas berbagai teknik prompting yang digunakan. Permasalahan utama yang diru-
muskan dalam penelitian ini meliputi: (1) bagaimana merancang metode otomatisasi 
pembuatan test scenario berbasis LLM yang mampu menghasilkan skenario uji yang rele-
van dan komprehensif untuk pengujian smart contract; serta (2) sejauh mana perbedaan 
teknik prompting memengaruhi kualitas dan efektivitas skenario pengujian yang 
dihasilkan. Adapun tujuan utama penelitian ini adalah menghasilkan metode pengujian 
yang lebih efisien, adaptif, dan sesuai dengan karakteristik sistem blockchain yang bersi-
fat terdesentralisasi dan tidak dapat diubah (immutable). Penelitian ini memberikan 
kontribusi metodologis berupa kerangka baru dalam pengujian smart contract berbasis 
LLM, sekaligus menyajikan evaluasi empiris mengenai pengaruh teknik prompting ter-
hadap kualitas test scenario. Hasil studi ini diharapkan dapat menjadi landasan bagi 
pengembangan metode pengujian otomatis yang lebih tangguh di lingkungan blockchain 
pada masa mendatang. 
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2. Bahan dan Metode 

 

Gambar 1. Diagram Alir Penelitian 

Metodologi penelitian ini terdiri atas lima tahapan utama. Tahap pertama adalah 
studi literatur, yang dilakukan untuk menghimpun dan menelaah konsep-konsep terkait 
smart contract, unit testing, serta pendekatan otomatisasi yang telah dikembangkan sebe-
lumnya guna mengidentifikasi celah penelitian. Tahap kedua adalah perancangan ek-
sperimen, yang mencakup penyusunan kerangka kerja eksperimental, penetapan objek 
uji, pemilihan teknik prompting dan LLM, serta perumusan alur konversi dan variabel 
penelitian. Tahap ketiga merupakan implementasi dan eksekusi, yaitu penerapan LLM 
untuk menghasilkan artefak pengujian secara otomatis dalam bentuk skrip Mocha dan 
Chai. Tahap keempat adalah evaluasi hasil, yang dilakukan dengan mengeksekusi se-
luruh skrip pengujian dan menganalisis nilai cakupan kode guna membandingkan efek-
tivitas masing-masing teknik prompting. Tahap terakhir adalah penarikan kesimpulan 
dan penyusunan saran berdasarkan temuan penelitian untuk menjawab rumusan masa-
lah dan memberikan arah pengembangan selanjutnya.  

 

Gambar 2. Diagram Alir Eksperimen 
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Alur penelitian ini dirancang melalui tiga tahapan inti yang berorientasi pada trans-
formasi bertingkat dan evaluasi kuantitatif. Tahap pertama diawali dengan pemanfaatan 
kode smart contract sebagai objek kajian utama yang dianalisis oleh Large Language Model 
Gemini 2.5 Pro. Pada tahap ini, terdapat tiga teknik prompting yang digunakan, yaitu 
Chain-of-Thought, Few-Shot, dan Role-Based yang diterapkan secara terpisah untuk 
mengekstraksi struktur logika dan fitur fungsional smart contract. Hasil dari proses ter-
sebut berupa Gherkin script, yakni representasi formal yang mengadopsi pendekatan Be-
havior-Driven Development dan berfungsi sebagai perantara yang memperjelas perilaku 
sistem melalui skenario yang terstandarisasi dan dapat ditelusuri. 

Tahap kedua melanjutkan proses konversi dengan menjadikan Gherkin Script se-
bagai masukan yang kembali diproses menggunakan Gemini 2.5 Pro dengan ketiga 
teknik prompting yang sama. Tujuan tahap ini adalah mentransformasikan skenario ber-
basis bahasa natural tersebut menjadi Mocha & Chai test case yang kompatibel dengan 
mekanisme eksekusi pada framework Hardhat. Tahap konversi ini tidak hanya 
memetakan spesifikasi perilaku menjadi skrip pengujian teknis yang operasional, tetapi 
juga memungkinkan penilaian komparatif terhadap konsistensi dan ketelitian masing-
masing teknik prompting dalam memahami konteks pengujian pada dua tingkat ab-
straksi yang berbeda. 

Tahap terakhir merupakan proses evaluasi kuantitatif yang ditujukan untuk menilai 
efektivitas test case yang dihasilkan oleh setiap teknik prompting. Seluruh skrip pengujian 
dijalankan terhadap smart contract yang sama guna menjaga kesetaraan kondisi pen-
gujian dan meminimalkan bias. Analisis kemudian dilakukan menggunakan empat 
metrik coverage, yaitu Statements, Branches, Functions, dan Lines yang secara kolektif mem-
berikan gambaran komprehensif mengenai tingkat kecakupan eksekusi kode. Per-
bandingan hasil pada setiap metrik tersebut selanjutnya menjadi dasar penilaian terhadap 
kemampuan masing-masing teknik prompting dalam menghasilkan skenario pengujian 
yang representatif dan berkualitas tinggi. 

3. Hasil 

Penelitian ini menggunakan metode eksperimen kuantitatif untuk mengevaluasi 
efektivitas komparatif tiga teknik prompt engineering, yaitu Chain-of-Thought, Few-Shot, 
dan Role-Based. Proses penelitian menerapkan alur kerja otomasi pembuatan unit testing 
dalam dua tahap, yang terdiri atas konversi kode smart contract menjadi skrip Gherkin, 
kemudian dilanjutkan dengan konversi skrip tersebut menjadi kasus uji (test case) Mocha 
& Chai. 

 
Tolak ukur keberhasilan dievaluasi secara kuantitatif menggunakan metrik coverage, 

yang mengukur persentase cakupan pada empat kriteria utama: Statements, Branches, 
Functions, dan Lines. LLM Gemini 2.5 Pro digunakan untuk mengkonversi Kode Smart 
Contract menjadi Gherkin Script, yang kemudian dikonversi lagi menjadi Mocha & Chai 
test case. 

3.1. Few-Shot Prompting 

Teknik Few-Shot Prompting dalam penelitian ini dirancang untuk memandu LLM 
menghasilkan unit test yang fungsional melalui proses konversi dua tahap yang masing-
masing disertai contoh (few-shot examples). Pada tahap pertama, model diberikan contoh 
konversi fungsi Solidity menjadi skenario Gherkin berformat Given-When-Then, sehingga 
LLM dapat memahami pola pemetaan logika kontrak ke dalam skenario pengujian yang 
terstandar. Pada tahap kedua, model memperoleh contoh kode unit test Hardhat yang 
memperlihatkan penggunaan struktur describe dan it, mekanisme async–await, serta asser-
tion Mocha & Chai. Kedua contoh ini berfungsi sebagai pola dasar yang menuntun model 
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dalam menghasilkan artefak pengujian dengan struktur, sintaks, dan gaya yang konsis-
ten. Dengan acuan eksplisit pada setiap tahap, rancangan few-shot prompt ini memastikan 
bahwa keluaran LLM tidak hanya selaras dengan format yang diharapkan, tetapi juga 
siap diimplementasikan dalam proses pengujian otomatis.  

 
Prompt 1. Konversi Smart Contract menjadi Gherkin 

Berikut contoh cara mengonversi fungsi Solidity menjadi skenario 

Gherkin: 

 

[TEMPEL POTONGAN KODE SKENARIO GHERKIN DISINI] 

 

Sekarang ubah kode smart contract berikut menjadi skrip Gherkin 

dengan gaya serupa untuk kontrak ini: 

[TEMPEL KODE SMART CONTRACT DISINI] 

 
Prompt 2. Konversi Gherkin menjadi Test Case Hardhat 

Berikut adalah contoh potongan kode program hardhat 

[TEMPEL POTONGAN KODE HARDHAT DISINI] 

 

Sekarang ubah skrip Gherkin berikut menjadi kode test Hardhat 

dengan gaya yang sama untuk Gherkin ini: 

 

[TEMPEL KODE SKENARIO GHERKIN DISINI] 

 

3.2. Role-Based Prompting 

Teknik Role-Based Prompting pada penelitian ini dirancang dengan menetapkan LLM 
sebagai QA Engineer Blockchain profesional untuk memastikan keluaran selaras dengan 
praktik pengujian yang sesuai standar industri. Pada tahap pertama, penetapan peran ini 
memandu model dalam mengonversi smart contract menjadi skenario Gherkin yang 
sistematis melalui struktur Given When Then. Pada tahap berikutnya, peran yang sama 
digunakan untuk menerjemahkan skenario Gherkin tersebut menjadi unit test Hardhat 
dengan penggunaan struktur describe, it, mekanisme async–await, dan assertion Mocha & 
Chai. Penetapan peran yang eksplisit ini membantu meningkatkan konsistensi, koherensi, 
dan ketepatan hasil generasi karena LLM beroperasi dalam kerangka identitas profesional 
yang jelas. 

 
Prompt 3. Konversi Smart Contract menjadi Gherkin 

Anda adalah seorang QA Engineer Blockchain profesional.   

Tugas anda adalah membuat skenario pengujian dalam format Gherkin 

dari smart contract berikut. 

 

Smart Contract: 

[TEMPEL KODE SMART CONTRACT DI SINI] 
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Prompt 4. Konversi Gherkin menjadi Test Case Hardhat 
Anda adalah QA Engineer Blockchain profesional yang akan mener-

jemahkan skenario Gherkin ke dalam kode pengujian Hardhat.   

Berikut ini adalah skenario gherkin yang harus kamu ubah menjadi 

test case hardhat :  

Gherkin 

[TEMPEL KODE GHERKIN DI SINI] 

 

3.3. Chain-of-Thought Prompting 

Rancangan Chain-of-Thought (CoT) Prompting pada penelitian ini disusun untuk me-
mandu LLM melakukan penalaran bertahap dalam menghasilkan unit test yang dapat 
diimplementasikan. Pada tahap awal, prompt mengarahkan model untuk mengidentifi-
kasi fungsi dan event penting dalam smart contract, kemudian menyusunnya menjadi 
skenario Gherkin yang merepresentasikan alur Given When Then. Selanjutnya, prompt 
memberikan panduan langkah demi langkah mengenai cara menerjemahkan setiap ba-
gian Gherkin menjadi kode pengujian Hardhat, yaitu Given sebagai tahap inisialisasi, 
When sebagai aksi transaksi, dan Then sebagai verifikasi menggunakan assertion. Dengan 
struktur instruksi yang berurutan, teknik CoT ini membantu LLM menghasilkan test case 
yang lebih logis, konsisten, dan selaras dengan praktik pengujian perangkat lunak, 
sekaligus meminimalkan hilangnya detail penting dalam proses konversi otomatis. 

 
Prompt 5. Konversi Smart Contract menjadi Gherkin 

Analisis smart contract berikut secara bertahap: 

1 Identifikasi fungsi utama dan event penting. 

2 Tentukan precondition (Diberikan), action (Ketika), dan hasil 

(Maka) 

3 Buat skenario Gherkin untuk setiap fungsi yang ada di kode 

program smart contract 

 

Smart Contract: 

[TEMPEL KODE SMART CONTRACT DI SINI] 

 

Prompt 6. Konversi Gherkin menjadi Test Case Hardhat 
Pikirkan langkah demi langkah bagaimana setiap bagian dari  

Gherkin diterjemahkan ke dalam kode test Hardhat: 

- Given → setup awal  

- When → aksi transaksi 

- Then → verifikasi hasil dengan expect() 

 

Baca dan analisa kode gherkin, untuk setiap skenario buatkan test case 

hardhatnya. Sekarang ubah Gherkin berikut menjadi test Hardhat yang 

lengkap. 

Skenario Gherkin: 
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[TEMPEL SKENARIO GHERKIN DI SINI] 

3.4. Pengujian 

Pengujian dilakukan dengan menjalankan seluruh skrip pengujian yang dihasilkan 
dari tiga teknik prompting pada tahapan sebelumnya. Proses eksekusi pengujian dil-
akukan menggunakan perintah “hardhat coverage --testfiles ‘test/fewshot.js’” untuk 
memperoleh data cakupan pengujian. Melalui perintah tersebut, sistem akan 
menghasilkan analisis terhadap tingkat statement coverage, branch coverage, function cover-
age, serta line coverage. Hasil analisis cakupan ini kemudian digunakan untuk menilai se-
jauh mana skrip pengujian telah mampu mengevaluasi fungsionalitas kontrak pintar 
secara menyeluruh. 

4. Pembahasan 

Tabel 1. Hasil Pengujian 

Skor Coverage 
Teknik Prompting  

Role-Based Few-Shot Chain-of-Thought 
Statement 95.83 95.83 87.5 
Branch  90 80 70 
Functions 85.71 85.71 71.43 
Lines  96.55 96.55  86.21 
Rata-rata  92.02 89.52 78.79 

 
Berdasarkan data hasil pengujian pada Tabel 1 di atas, dapat disimpulkan bahwa 

Role-Based prompting memberikan performa terbaik dengan rata-rata coverage mencapai 
92.02%, diikuti oleh Few-Shot Prompting dengan nilai 89.52%, sedangkan Chain-of-
Thought memperoleh rata-rata paling rendah yaitu 78.79%. Temuan ini menegaskan 
bahwa penelitian berhasil mengidentifikasi teknik prompting yang paling efektif dalam 
menghasilkan skrip pengujian otomatis berbasis LLM. Secara lebih rinci, Role-Based 
Prompting terbukti menunjukkan kemampuannya dalam menangkap struktur logika 
secara lebih komprehensif. 

 
Sementara itu, Few-Shot Prompting memberikan kinerja yang baik pada kategori 

Statement, Functions, dan Lines, tetapi masih menunjukkan keterbatasan pada Branch cov-
erage yang hanya mencapai 80%. Adapun Chain-of-Thought konsisten menghasilkan skor 
paling rendah pada seluruh metrik, sehingga kurang optimal untuk menghasilkan unit 
test yang lengkap dan implementatif. Secara keseluruhan, temuan ini menegaskan bahwa 
pendekatan berbasis peran lebih efektif dalam memandu LLM menghasilkan artefak pen-
gujian yang berkualitas dan berorientasi implementasi. 

5. Kesimpulan 

Berdasarkan hasil eksperimen yang telah dilaksanakan, penelitian ini menyimpul-
kan bahwa teknik prompt engineering memberikan pengaruh yang signifikan terhadap 
kualitas unit testing smart contract yang dihasilkan secara otomatis. Dari tiga teknik yang 
diuji, Role-Based Prompting menunjukkan performa terbaik dengan rata-rata coverage sebe-
sar 92.02%, diikuti oleh Few-Shot Prompting dengan 89.52%, sementara Chain-of-Thought 
menghasilkan rata-rata terendah yaitu 78.79%. Keunggulan Role-Based Prompting teru-
tama terlihat pada capaian Branch coverage sebesar 90%, yang merupakan metrik penting 
dalam memverifikasi logika kondisional serta mengidentifikasi potensi edge case pada 
smart contract. Sementara itu, Few-Shot Prompting memberikan performa baik pada kate-
gori Statement, Functions, dan Lines, tetapi tetap menunjukkan kelemahan pada Branch 
coverage yang hanya mencapai 80%. 
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Temuan ini mengindikasikan bahwa pemberian konteks peran atau persona kepada 

LLM lebih efektif dibandingkan hanya memberikan contoh (Few-Shot) dalam 
menghasilkan pengujian yang komprehensif, stabil, dan mampu menangkap potensi bug 
dengan lebih andal. Penelitian ini memiliki keterbatasan pada generalisasi hasil, karena 
seluruh eksperimen dilakukan menggunakan satu model LLM yaitu Gemini 2.5 Pro dan 
evaluasi hanya mengandalkan metrik coverage yang tidak secara langsung mengukur ke-
mampuan deteksi bug. 

 
Penelitian lanjutan disarankan untuk menguji berbagai model LLM lainnya, men-

erapkan metrik evaluasi yang lebih kuat seperti Mutation Testing, serta mengeksplorasi 
teknik prompting hibrida yang menggabungkan keunggulan Role-Based dan Few-Shot guna 
mencapai hasil yang lebih optimal. 
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