Jurnal Teknologi Informasi dan Multimedia
p-ISSN : 2715-2529

e-ISSN : 2684-9151
https://journal.sekawan-org.id/index.php/jtim

Evaluasi Teknik Prompting pada Large Language Model untuk
Otomatisasi Penyusunan Skenario Unit Testing Smart Contract

Salman El Farisi 1*, Fahlia Athiyya Marva 2

Sitasi: S. E. Farisi and F. A. Marva,
“Evaluasi Teknik Prompting pada
Large Language Model untuk Otom-
atisasi Penyusunan Skenario Unit
Testing Smart Contract”, Jurnal
Teknologi Informasi Dan Multime-
dia, vol. 8, no. 1, pp. 99-108, 2026.

https://doi.org/10.35746/jtim.v8i1.912

Diterima: 03-12-2025
Direvisi: 09-01-2026
Disetujui: 20-01-2026

Copyright: © 2026 oleh para penulis.
Karya ini dilisensikan di bawah Cre-
ative Commons Attribution-ShareA-
like 4.0
(https://creativecommons.org/li-

censes/by-sa/4.0/).

International License.

1 Program Studi Teknik Informatika, Sekolah Tinggi Teknologi Terpadu Nurul Fikri, Indonesia
2 Program Studi Sistem Informasi, Sekolah Tinggi Teknologi Terpadu Nurul Fikri, Indonesia

* Korespondensi: salman@nurulfikri.ac.id

Abstract: Automated unit testing is essential for ensuring the security and reliability of smart con-
tracts, particularly because their immutable nature prevents post-deployment modifications. How-
ever, manually creating test scenarios remains time-consuming, costly, and highly dependent on
expert knowledge. A potential solution is to utilize Al technology, particularly Large Language
Models (LLMs), to automatically generate test scenarios. This study fills the research gap in lever-
aging LLM technology in the software testing space by proposing a workflow for automatically
generating unit test scenarios for blockchain smart contract code using Large Language Models
(LLMs). The proposed workflow consists of two stages: converting Solidity smart contracts into
structured Gherkin scenarios and translating those scenarios into executable Hardhat unit test
scripts. This study proposes an automated workflow using Large Language Models (LLMs) to ad-
dress these challenges. The workflow consists of two stages: con-verting Solidity smart contracts
into structured Gherkin scenarios and trans-lating those scenarios into executable Hardhat unit test
scripts. Using the Gemini 2.5 Pro model, the research evaluates three prompting techniques such as
Chain-of-Thought, Few-Shot, and Role-Based through quantitative analysis based on code coverage
metrics, including Statements, Branches, Functions, and Lines. The experimental results show that
Role-Based Prompting achieves the highest average coverage (92.02%), followed by Few-Shot
Prompting (89.52%), while Chain-of-Thought produces the lowest coverage (78.79%). Role-Based
Prompting also attains the highest Branch coverage, demonstrating superior capability in capturing
conditional logic within smart contracts.

Keywords: Coverage Metrics; Large Language Models; Prompt Engineering; Smart Contract; Unit Testing

Abstrak: Pengujian unit otomatis sangat penting untuk memastikan keamanan dan keandalan
smart contract, terutama karena sifatnya yang tidak dapat diubah untuk mencegah modifikasi
setelah deployment. Namun, pembuatan skenario pengujian secara manual memakan waktu, biaya,
dan sangat bergantung pada pengetahuan dan pengalaman penguji. Salah satu pendekatan yang
dapat dilakukan adalah dengan memanfaatkan teknologi Al terutama Large Language Model (LLM)
untuk menghasilkan skenario pengujian secara otomatis. Studi ini mengisi celah penelitian dalam
memanfaatkan teknologi LLM pada ruang lingkup pengujian perangkat lunak dengan men-
gusulkan alur kerja pembuatan skenario pengujian unit untuk kode smart contract blockchain
secara otomatis menggunakan Large Language Models (LLMs). Alur kerja yang diusulkan dari dua
tahap: mengonversi smart contract Solidity menjadi skenario Gherkin yang terstruktur dan mener-
jemahkan skenario tersebut menjadi skrip pengujian unit Hardhat yang dapat dieksekusi.
Penelitian ini menggunakan model Gemini 2.5 Pro dalam mengevaluasi tiga teknik prompting, yaitu
Chain-of-Thought, Few-Shot, dan Role-Based, melalui analisis kuantitatif berdasarkan metrik cakupan

JTIM 2026, Vol. 8, No. 1, hlm. 99-108

https://doi.org/10.35746/jtim.v8i1.912

JTIM 2026, Vol. 8, No. 1

100

pengujian (test coverage) dengan kriteria Statements, Branch, Functions, dan Lines coverage. Hasil ek-
sperimen menunjukkan bahwa Role-Based Prompting mencapai cakupan rata-rata tertinggi (92,02%),
diikuti oleh Few-Shot Prompting (89,52%), dan Chain-of-Thought dengan cakupan terendah (78,79%).
Role-Based Prompting juga mencapai cakupan Branch tertinggi, menunjukkan kemampuan superior
dalam menangkap logika kondisional dalam smart contract.

Kata kunci: Metrik Cakupan; Model Bahasa Besar; Rekayasa Prompt; Smart Contract; Pengujian Unit

1. Pendahuluan

Perkembangan teknologi informasi di era Revolusi Industri 4.0 berlangsung sangat
pesat dan memberikan dampak signifikan terhadap berbagai sektor, tidak hanya industri,
tetapi juga bidang ekonomi, keuangan, dan layanan digital [1]. Transformasi ini didorong
oleh berbagai teknologi baru, salah satunya adalah blockchain dan smart contract, yang
telah membawa perubahan mendasar terutama dalam sektor Keuangan Terdesentralisasi
(Decentralized Finance/DeFi). Nilai pasar DeFi bahkan pernah melampaui 180 miliar dolar
AS, menunjukkan besarnya pengaruh teknologi ini dalam ekosistem finansial modern [2].

Blockchain merupakan sistem penyimpanan data terdistribusi berbentuk buku besar
(ledger) yang direplikasi pada banyak node dalam jaringan tanpa adanya otoritas pusat.
Setiap transaksi diverifikasi melalui mekanisme konsensus, sehingga data menjadi trans-
paran, aman, dan tahan terhadap manipulasi [3]. Di atas teknologi blockchain, smart con-
tract berperan sebagai program yang secara otomatis mengeksekusi logika tertentu ketika
kondisi yang telah ditentukan terpenuhi, tanpa memerlukan pihak perantara.

Smart contract berfungsi sebagai fondasi utama berbagai aplikasi terdesentralisasi
(decentralized applications/dApps) dan disimpan secara permanen di seluruh node jaringan
blockchain [4]. Karakteristik utama yang diwarisinya adalah immutability [5] dan trans-
paransi, yang memungkinkan siapa pun di jaringan melihat aturan dan riwayat transaksi
kontrak [6]. Kedua sifat ini memungkinkan terciptanya sistem yang bersifat self-executing
dan membangun kepercayaan antar pihak. Dalam pengujian, penggunaan Gherkin se-
bagai domain-specific language dalam pendekatan Behavior-Driven Development (BDD) san-
gat relevan karena mengadopsi struktur Given—-When-Then yang mudah dipahami
sekaligus dapat dieksekusi [7].

Salah satu karakteristik utama smart contract adalah immutability, yaitu sifat kode
yang tidak dapat diubah setelah di-deploy ke jaringan blockchain [5]. Setelah kontrak
dipublikasikan, seluruh logika di dalamnya menjadi permanen, yang pada satu sisi mem-
berikan jaminan stabilitas, keandalan, dan keamanan tanpa ketergantungan pihak ketiga
[8]. Namun di sisi lain, sifat ini menimbulkan risiko besar apabila terdapat kesalahan
logika atau celah keamanan pada saat pengembangan. Beberapa kasus menunjukkan
dampak fatal dari kurang optimalnya pengujian smart contract. Peretasan The DAO pada
tahun 2016 menyebabkan kerugian sebesar 3,6 juta Ether akibat adanya kerentanan re-
entrancy yang seharusnya dapat dideteksi lebih awal melalui pengujian yang memadai
[9]. Insiden serupa juga terjadi pada Wormhole Bridge pada Februari 2022, di mana lebih
dari 120.000 wETH senilai lebih dari 320 juta dolar AS berhasil dicuri [10]. Peristiwa-per-
istiwa tersebut menegaskan bahwa pengujian smart contract merupakan aspek krusial
dalam menjaga keamanan dan stabilitas sistem berbasis blockchain.

Dalam rekayasa perangkat lunak, pengujian, khususnya unit testing, merupakan
tahapan penting untuk memastikan setiap komponen sistem berfungsi sesuai dengan spe-
sifikasi yang ditentukan [11].

JTIM 2026, Vol. 8, No. 1

101

Salah satu pendekatan yang mulai dikembangkan untuk meningkatkan efisiensi
pengujian adalah pemanfaatan kecerdasan buatan, khususnya Large Language Model
(LLM). LLM merupakan model kecerdasan buatan berskala besar yang terbukti mampu
mendukung pembuatan kode, deteksi bug, serta penyusunan skenario pengujian secara
otomatis [12]. Untuk mengoptimalkan hasil yang dihasilkan LLM, digunakan teknik
prompt engineering, yaitu perancangan instruksi yang strategis agar model menghasilkan
respons yang relevan, akurat, dan kontekstual [13]. Kualitas prompt berpengaruh lang-
sung terhadap kedalaman penalaran dan relevansi output yang dihasilkan [14]. Dalam
penelitian ini, digunakan tiga metode utama, yaitu Chain-of-Thought, Few-Shot, dan Role-
Based prompting. Chain-of-Thought mendorong model untuk berpikir secara bertahap se-
hingga meningkatkan performa dalam menyelesaikan masalah kompleks [15], [16]. Few-
Shot prompting menyediakan beberapa contoh singkat untuk membantu model me-
mahami pola dan konteks tugas [15], [16]. Sementara itu, Role-Based prompting menetap-
kan peran tertentu kepada model, seperti QA engineer atau blockchain developer, sehingga
skenario pengujian yang dihasilkan menjadi lebih terarah, kontekstual, dan presisi [17],
[18].

Sejumlah penelitian telah mengeksplorasi penggunaan LLM dalam pembuatan ske-
nario uji otomatis. Lahbib et al. (2024) mengusulkan pendekatan berbasis LLM dan prompt
engineering dengan memanfaatkan representasi use case dalam format XML untuk
menghasilkan test case secara otomatis melalui model seperti ChatGPT dan Gemini [12].
Penelitian lain oleh Margarida et al. (2025) mengembangkan alur otomatisasi acceptance
testing dengan mengonversi user story menjadi skenario Gherkin dan selanjutnya ke da-
lam skrip pengujian menggunakan Cypress [19]. Sementara itu, Zain et al. (2025) mem-
perkenalkan framework E2E-TestGen yang memanfaatkan LLM untuk menghasilkan
pengujian end-to-end adaptif dengan bantuan object detection, OCR, dan representasi Hy-
brid DOM Dataset (HDD) [20]. Meskipun hasilnya menjanjikan, penelitian-penelitian ter-
sebut belum secara khusus mengkaji efektivitas teknik prompting pada konteks pengujian
smart contract, terutama dari segi kualitas dan cakupan skenario uji yang dihasilkan.

Berdasarkan celah penelitian yang telah diidentifikasi, studi ini berfokus pada
pengembangan metode otomatisasi pembuatan test scenario berbasis Large Language Model
(LLM) untuk pengujian smart contract, serta melakukan analisis komparatif terhadap
efektivitas berbagai teknik prompting yang digunakan. Permasalahan utama yang diru-
muskan dalam penelitian ini meliputi: (1) bagaimana merancang metode otomatisasi
pembuatan test scenario berbasis LLM yang mampu menghasilkan skenario uji yang rele-
van dan komprehensif untuk pengujian smart contract; serta (2) sejauh mana perbedaan
teknik prompting memengaruhi kualitas dan efektivitas skenario pengujian yang
dihasilkan. Adapun tujuan utama penelitian ini adalah menghasilkan metode pengujian
yang lebih efisien, adaptif, dan sesuai dengan karakteristik sistem blockchain yang bersi-
fat terdesentralisasi dan tidak dapat diubah (immutable). Penelitian ini memberikan
kontribusi metodologis berupa kerangka baru dalam pengujian smart contract berbasis
LLM, sekaligus menyajikan evaluasi empiris mengenai pengaruh teknik prompting ter-
hadap kualitas test scenario. Hasil studi ini diharapkan dapat menjadi landasan bagi
pengembangan metode pengujian otomatis yang lebih tangguh di lingkungan blockchain
pada masa mendatang.

JTIM 2026, Vol. 8, No. 1 102

2. Bahan dan Metode

.| Konsep teori dan metodologi yang

STUDI LITERATUR
relevan untuk penyusunan test case

y Perancangan teknik prompting, penentuan
LLM yang digunakan, dan penentuan teknik
PERANCANGAN prompting
EKSPERIMEN N

[Teknik Prompting: Chain-of-Thought, Few-
Shot, Role-Based
LLM: Gemini 2.5 Pro

IMPLEMENTASI DAN Kode skrip Gherkin dan kode skrip test
EKSEKUSI ”| case dalam format Mocha + Chai
\ 4
EVALUASI HASIL > Evaluasi coverage yang dihasilkan dari

3 teknik prompting

Kesimpulan dan saran dari hasil

IKESIMPULAN DAN SARAN y
evaluasi

Gambar 1. Diagram Alir Penelitian

Metodologi penelitian ini terdiri atas lima tahapan utama. Tahap pertama adalah
studi literatur, yang dilakukan untuk menghimpun dan menelaah konsep-konsep terkait
smart contract, unit testing, serta pendekatan otomatisasi yang telah dikembangkan sebe-
lumnya guna mengidentifikasi celah penelitian. Tahap kedua adalah perancangan ek-
sperimen, yang mencakup penyusunan kerangka kerja eksperimental, penetapan objek
uji, pemilihan teknik prompting dan LLM, serta perumusan alur konversi dan variabel
penelitian. Tahap ketiga merupakan implementasi dan eksekusi, yaitu penerapan LLM
untuk menghasilkan artefak pengujian secara otomatis dalam bentuk skrip Mocha dan
Chai. Tahap keempat adalah evaluasi hasil, yang dilakukan dengan mengeksekusi se-
luruh skrip pengujian dan menganalisis nilai cakupan kode guna membandingkan efek-
tivitas masing-masing teknik prompting. Tahap terakhir adalah penarikan kesimpulan
dan penyusunan saran berdasarkan temuan penelitian untuk menjawab rumusan masa-
lah dan memberikan arah pengembangan selanjutnya.

Kode LLM Prompt (Chain-of-
> Thought, Few-Shot, Role » Gherkin Script
Smart Contract Based)
Y
Evaluasi Coverage : LLM Prompt (Chain-of-
Mencakup (rents, (€€ Mocha & Chal < Thought, Few-Shot,
Branch, Function, Lines) Test Case Role-Based)

Gambar 2. Diagram Alir Eksperimen

JTIM 2026, Vol. 8, No. 1

103

Alur penelitian ini dirancang melalui tiga tahapan inti yang berorientasi pada trans-
formasi bertingkat dan evaluasi kuantitatif. Tahap pertama diawali dengan pemanfaatan
kode smart contract sebagai objek kajian utama yang dianalisis oleh Large Language Model
Gemini 2.5 Pro. Pada tahap ini, terdapat tiga teknik prompting yang digunakan, yaitu
Chain-of-Thought, Few-Shot, dan Role-Based yang diterapkan secara terpisah untuk
mengekstraksi struktur logika dan fitur fungsional smart contract. Hasil dari proses ter-
sebut berupa Gherkin script, yakni representasi formal yang mengadopsi pendekatan Be-
havior-Driven Development dan berfungsi sebagai perantara yang memperjelas perilaku
sistem melalui skenario yang terstandarisasi dan dapat ditelusuri.

Tahap kedua melanjutkan proses konversi dengan menjadikan Gherkin Script se-
bagai masukan yang kembali diproses menggunakan Gemini 2.5 Pro dengan ketiga
teknik prompting yang sama. Tujuan tahap ini adalah mentransformasikan skenario ber-
basis bahasa natural tersebut menjadi Mocha & Chai test case yang kompatibel dengan
mekanisme eksekusi pada framework Hardhat. Tahap konversi ini tidak hanya
memetakan spesifikasi perilaku menjadi skrip pengujian teknis yang operasional, tetapi
juga memungkinkan penilaian komparatif terhadap konsistensi dan ketelitian masing-
masing teknik prompting dalam memahami konteks pengujian pada dua tingkat ab-
straksi yang berbeda.

Tahap terakhir merupakan proses evaluasi kuantitatif yang ditujukan untuk menilai
efektivitas test case yang dihasilkan oleh setiap teknik prompting. Seluruh skrip pengujian
dijalankan terhadap smart contract yang sama guna menjaga kesetaraan kondisi pen-
gujian dan meminimalkan bias. Analisis kemudian dilakukan menggunakan empat
metrik coverage, yaitu Statements, Branches, Functions, dan Lines yang secara kolektif mem-
berikan gambaran komprehensif mengenai tingkat kecakupan eksekusi kode. Per-
bandingan hasil pada setiap metrik tersebut selanjutnya menjadi dasar penilaian terhadap
kemampuan masing-masing teknik prompting dalam menghasilkan skenario pengujian
yang representatif dan berkualitas tinggi.

3. Hasil

Penelitian ini menggunakan metode eksperimen kuantitatif untuk mengevaluasi
efektivitas komparatif tiga teknik prompt engineering, yaitu Chain-of-Thought, Few-Shot,
dan Role-Based. Proses penelitian menerapkan alur kerja otomasi pembuatan unit testing
dalam dua tahap, yang terdiri atas konversi kode smart contract menjadi skrip Gherkin,
kemudian dilanjutkan dengan konversi skrip tersebut menjadi kasus uji (test case) Mocha
& Chai.

Tolak ukur keberhasilan dievaluasi secara kuantitatif menggunakan metrik coverage,
yang mengukur persentase cakupan pada empat kriteria utama: Statements, Branches,
Functions, dan Lines. LLM Gemini 2.5 Pro digunakan untuk mengkonversi Kode Smart
Contract menjadi Gherkin Script, yang kemudian dikonversi lagi menjadi Mocha & Chai
test case.

3.1. Few-Shot Prompting

Teknik Few-Shot Prompting dalam penelitian ini dirancang untuk memandu LLM
menghasilkan unit test yang fungsional melalui proses konversi dua tahap yang masing-
masing disertai contoh (few-shot examples). Pada tahap pertama, model diberikan contoh
konversi fungsi Solidity menjadi skenario Gherkin berformat Given-When-Then, sehingga
LLM dapat memahami pola pemetaan logika kontrak ke dalam skenario pengujian yang
terstandar. Pada tahap kedua, model memperoleh contoh kode unit test Hardhat yang
memperlihatkan penggunaan struktur describe dan it, mekanisme async—await, serta asser-
tion Mocha & Chai. Kedua contoh ini berfungsi sebagai pola dasar yang menuntun model

JTIM 2026, Vol. 8, No. 1

104

dalam menghasilkan artefak pengujian dengan struktur, sintaks, dan gaya yang konsis-
ten. Dengan acuan eksplisit pada setiap tahap, rancangan few-shot prompt ini memastikan
bahwa keluaran LLM tidak hanya selaras dengan format yang diharapkan, tetapi juga
siap diimplementasikan dalam proses pengujian otomatis.

Prompt 1. Konversi Smart Contract menjadi Gherkin

Berikut contoh cara mengonversi fungsi Solidity menjadi skenario

Gherkin:

[TEMPEL POTONGAN KODE SKENARIO GHERKIN DISINTI]

Sekarang ubah kode smart contract berikut menjadi skrip Gherkin

dengan gaya serupa untuk kontrak ini:

[TEMPEL KODE SMART CONTRACT DISINI]

Prompt 2. Konversi Gherkin menjadi Test Case Hardhat

Berikut adalah contoh potongan kode program hardhat
[TEMPEL POTONGAN KODE HARDHAT DISINI]

Sekarang ubah skrip Gherkin berikut menjadi kode test Hardhat

dengan gaya yang sama untuk Gherkin ini:

[TEMPEL KODE SKENARIO GHERKIN DISINI]

3.2. Role-Based Prompting

Teknik Role-Based Prompting pada penelitian ini dirancang dengan menetapkan LLM
sebagai QA Engineer Blockchain profesional untuk memastikan keluaran selaras dengan
praktik pengujian yang sesuai standar industri. Pada tahap pertama, penetapan peran ini
memandu model dalam mengonversi smart contract menjadi skenario Gherkin yang
sistematis melalui struktur Given When Then. Pada tahap berikutnya, peran yang sama
digunakan untuk menerjemahkan skenario Gherkin tersebut menjadi unit test Hardhat
dengan penggunaan struktur describe, it, mekanisme async—await, dan assertion Mocha &
Chai. Penetapan peran yang eksplisit ini membantu meningkatkan konsistensi, koherensi,
dan ketepatan hasil generasi karena LLM beroperasi dalam kerangka identitas profesional
yang jelas.

Prompt 3. Konversi Smart Contract menjadi Gherkin

Anda adalah seorang QA Engineer Blockchain profesional.
Tugas anda adalah membuat skenario pengujian dalam format Gherkin

dari smart contract berikut.

Smart Contract:

[TEMPEL KODE SMART CONTRACT DI SINI]

JTIM 2026, Vol. 8, No. 1 105

Prompt 4. Konversi Gherkin menjadi Test Case Hardhat

Anda adalah QA Engineer Blockchain profesional yang akan mener-
jemahkan skenario Gherkin ke dalam kode pengujian Hardhat.
Berikut ini adalah skenario gherkin yang harus kamu ubah menjadi
test case hardhat

Gherkin

[TEMPEL KODE GHERKIN DI SINTI]

3.3. Chain-of-Thought Prompting

Rancangan Chain-of-Thought (CoT) Prompting pada penelitian ini disusun untuk me-
mandu LLM melakukan penalaran bertahap dalam menghasilkan unit test yang dapat
diimplementasikan. Pada tahap awal, prompt mengarahkan model untuk mengidentifi-
kasi fungsi dan event penting dalam smart contract, kemudian menyusunnya menjadi
skenario Gherkin yang merepresentasikan alur Given When Then. Selanjutnya, prompt
memberikan panduan langkah demi langkah mengenai cara menerjemahkan setiap ba-
gian Gherkin menjadi kode pengujian Hardhat, yaitu Given sebagai tahap inisialisasi,
When sebagai aksi transaksi, dan Then sebagai verifikasi menggunakan assertion. Dengan
struktur instruksi yang berurutan, teknik CoT ini membantu LLM menghasilkan test case
yang lebih logis, konsisten, dan selaras dengan praktik pengujian perangkat lunak,
sekaligus meminimalkan hilangnya detail penting dalam proses konversi otomatis.

Prompt 5. Konversi Smart Contract menjadi Gherkin

Analisis smart contract berikut secara bertahap:

1 TIdentifikasi fungsi utama dan event penting.

2 Tentukan precondition (Diberikan), action (Ketika), dan hasil
(Maka)

3 Buat skenario Gherkin untuk setiap fungsi yang ada di kode

program smart contract

Smart Contract:

[TEMPEL KODE SMART CONTRACT DI SINI]

Prompt 6. Konversi Gherkin menjadi Test Case Hardhat

Pikirkan langkah demi langkah bagaimana setiap bagian dari
Gherkin diterjemahkan ke dalam kode test Hardhat:

- Given - setup awal

- When - aksi transaksi

- Then - verifikasi hasil dengan expect ()

Baca dan analisa kode gherkin, untuk setiap skenario buatkan test case
hardhatnya. Sekarang ubah Gherkin berikut menjadi test Hardhat yang
lengkap.

Skenario Gherkin:

JTIM 2026, Vol. 8, No. 1

106

[TEMPEL SKENARIO GHERKIN DI SINT]

3.4. Pengujian

Pengujian dilakukan dengan menjalankan seluruh skrip pengujian yang dihasilkan
dari tiga teknik prompting pada tahapan sebelumnya. Proses eksekusi pengujian dil-
akukan menggunakan perintah “hardhat coverage --testfiles ‘test/fewshot.js’” untuk
memperoleh data cakupan pengujian. Melalui perintah tersebut, sistem akan
menghasilkan analisis terhadap tingkat statement coverage, branch coverage, function cover-
age, serta line coverage. Hasil analisis cakupan ini kemudian digunakan untuk menilai se-
jauh mana skrip pengujian telah mampu mengevaluasi fungsionalitas kontrak pintar
secara menyeluruh.

4. Pembahasan

Tabel 1. Hasil Pengujian

Teknik Prompting
Skor Coverage ;
Role-Based Few-Shot Chain-of-Thought
Statement 95.83 95.83 87.5
Branch 90 80 70
Functions 85.71 85.71 71.43
Lines 96.55 96.55 86.21
Rata-rata 92.02 89.52 78.79

Berdasarkan data hasil pengujian pada Tabel 1 di atas, dapat disimpulkan bahwa
Role-Based prompting memberikan performa terbaik dengan rata-rata coverage mencapai
92.02%, diikuti oleh Few-Shot Prompting dengan nilai 89.52%, sedangkan Chain-of-
Thought memperoleh rata-rata paling rendah yaitu 78.79%. Temuan ini menegaskan
bahwa penelitian berhasil mengidentifikasi teknik prompting yang paling efektif dalam
menghasilkan skrip pengujian otomatis berbasis LLM. Secara lebih rinci, Role-Based
Prompting terbukti menunjukkan kemampuannya dalam menangkap struktur logika
secara lebih komprehensif.

Sementara itu, Few-Shot Prompting memberikan kinerja yang baik pada kategori
Statement, Functions, dan Lines, tetapi masih menunjukkan keterbatasan pada Branch cov-
erage yang hanya mencapai 80%. Adapun Chain-of-Thought konsisten menghasilkan skor
paling rendah pada seluruh metrik, sehingga kurang optimal untuk menghasilkan unit
test yang lengkap dan implementatif. Secara keseluruhan, temuan ini menegaskan bahwa
pendekatan berbasis peran lebih efektif dalam memandu LLM menghasilkan artefak pen-
gujian yang berkualitas dan berorientasi implementasi.

5. Kesimpulan

Berdasarkan hasil eksperimen yang telah dilaksanakan, penelitian ini menyimpul-
kan bahwa teknik prompt engineering memberikan pengaruh yang signifikan terhadap
kualitas unit testing smart contract yang dihasilkan secara otomatis. Dari tiga teknik yang
diuji, Role-Based Prompting menunjukkan performa terbaik dengan rata-rata coverage sebe-
sar 92.02%, diikuti oleh Few-Shot Prompting dengan 89.52%, sementara Chain-of-Thought
menghasilkan rata-rata terendah yaitu 78.79%. Keunggulan Role-Based Prompting teru-
tama terlihat pada capaian Branch coverage sebesar 90%, yang merupakan metrik penting
dalam memverifikasi logika kondisional serta mengidentifikasi potensi edge case pada
smart contract. Sementara itu, Few-Shot Prompting memberikan performa baik pada kate-
gori Statement, Functions, dan Lines, tetapi tetap menunjukkan kelemahan pada Branch
coverage yang hanya mencapai 80%.

JTIM 2026, Vol. 8, No. 1 107

Temuan ini mengindikasikan bahwa pemberian konteks peran atau persona kepada
LLM lebih efektif dibandingkan hanya memberikan contoh (Few-Shot) dalam
menghasilkan pengujian yang komprehensif, stabil, dan mampu menangkap potensi bug
dengan lebih andal. Penelitian ini memiliki keterbatasan pada generalisasi hasil, karena
seluruh eksperimen dilakukan menggunakan satu model LLM yaitu Gemini 2.5 Pro dan
evaluasi hanya mengandalkan metrik coverage yang tidak secara langsung mengukur ke-
mampuan deteksi bug.

Penelitian lanjutan disarankan untuk menguji berbagai model LLM lainnya, men-
erapkan metrik evaluasi yang lebih kuat seperti Mutation Testing, serta mengeksplorasi
teknik prompting hibrida yang menggabungkan keunggulan Role-Based dan Few-Shot guna
mencapai hasil yang lebih optimal.

Referensi

(1]

(12]

(13]

(14]

(13]
(16]
(17]
(18]

(19]

L. Hertati and O. Safkaur, “Dampak Revolusi Industri 4.0 Era Covid-19 pada Sistem Informasi Akuntansi Terhadap
Struktur Modal Perusahaan,”] Ris. Akunt. dan Keuang, vol. 8, mno. 3, pp. 503518, 2020,
https://doi.org/10.17509/jrak.v8i3.23557.

DeFiLlama, “Defillama - DeFi Dashboard,” 2024. [Online]. Available: https://defillama.com/. [Accessed: Oct. 2, 2025]

E. Barceld, K. Dimi¢-Misi¢, M. Imani, V. Spasojevi¢ Brki¢, M. Hummel, and P. Gane, “Regulatory Paradigm and Challenge
for Blockchain Integration of Decentralized Systems: Example —Renewable Energy Grids,” Sustain., vol. 15, no. 3, 2023,
https://doi.org/10.3390/su15032571

A. Mattew and M. Anno Suwarno, “Rancang Bangun Aplikasi Donasi Terdesentralisasi Berbasis Blockchain,” Ikraith-In-
formatika, vol. 7, no. 2, pp. 23-32, 2022, https://doi.org/10.37817/ikraith-informatika.v7i2.2247.

I. Qasse, I. M. Ali, N. Ahmed, M. Hamdaqa, and B. b. Jonsson, “The Myth of Immutability: A Multivocal Review on Smart
Contract Upgradeability,” 2025, https://doi.org/10.48550/arXiv.2504.02719

S. A. Latifa Albshaier and M. M. H. Rahman, “A_Review_of_Blockchains_Role_in_E-Commerce_Transa.pdf,” Mdpi, 2024,
https://doi.org/10.3390/computers13010027..

“Reference | Cucumber.” [Online]. Available: https://cucumber.io/docs/gherkin/reference/. [Accessed: Oct. 25, 2025]

C. Zhang, Q. Wei, and X. Li, “Security Analysis of Ponzi Schemes in Ethereum Smart Contracts,” pp. 1-31, 2025,
https://doi.org/10.48550/arXiv.2510.03819

D. Siegel, “Understanding The DAO Attack,” 2016. http://coindesk.com/learn/understanding-the-dao-attack [Accessed:
Oct. 10, 2025].

Merkle Science, "Hack Track: Analysis of Wormhole Token Bridge Exploit,” Merkle Science, Feb. 4, 2022.
https://www.merklescience.com/blog/hack-track-analysis-of-wormhole token-bridge-exploit. [Accessed: Oct. 25, 2025]

M. G. Alkhairi, S. P. A. Alkadri, and P. Y. Utami, “Implementasi Unit Testing Dan End-To-End Testing Pada Sistem Infor-
masi Akademik Teknik Informatika,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 4, pp. 2208-2219, 2024,
https://doi.org/10.29100/jipi.v9i4.5626.

L. Naimi, E. M. Bouziane, M. Manaouch, and A. Jakimi, “A new approach for automatic test case generation from use case
diagram using LLMs and prompt engineering,” 2024 Int. Conf. Circuit, Syst. Commun. ICCSC 2024, 2024,
https://doi.org/10.1109/ICCSC62074.2024.10616548.

A. M. Rincon, A. M. R. Vincenzi, and J. P. Faria, “LLM Prompt Engineering for Automated White-Box Integration Test
Generation in REST APIs,” 2025 IEEE Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 2025, pp. 21-28, 2025,
https://doi.org/10.1109/ICSTW64639.2025.10962507.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J. & Schmidt, D. C., “A Prompt
Pattern Catalog to Enhance Prompt Engineering with ChatGPT,” arXiv preprint arXiv:2302.11382, Feb. 2023.
https://doi.org/10.48550/arXiv.2302.11382.

A. Agsa, A. Aslam, and M. Saeed, “Efficient Prompt Engineering: Techniques and Trends for Maximizing LLM Output,”
no. May, 2025, https://doi.org/10.5281/zenodo.15186123.

J. Almeida, “Prompt Engineering: A Comparative Study of Prompting Techniques in Al Language Models,” 2025 15th IEEE
Integr. STEM Educ. Conf. ISEC 2025, pp. 1-4, 2025, https://doi.org/10.1109/ISEC64801.2025.11147384.

A. Njifenjou, V. Sucal, B. Jabaian, and F. Lefévre, “Role-Play Zero-Shot Prompting with Large Language Models for Open-
Domain Human-Machine Conversation,” arXiv preprint arXiv:2406.18460, 2024, https://doi.org/10.48550/arXiv.2406.18460.
L. Mitchell, "Prompt engineering for LLMs," Gravitee, Jun. 16, 2023. https://www.gravitee.io/blog/prompt-engineering-for
IIms. [Accessed: Nov. 4, 2025]

M. Ferreira, L. Viegas, J. P. Faria, and B. Lima, “Acceptance Test Generation with Large Language Models: An Industrial
Case Study,” pp. 1-11, 2025, https://doi.org/10.1109/ast66626.2025.00007.

JTIM 2026, Vol. 8, No. 1 108

[20] Z.Ul Abideen and G. Junxia, “Intent Based E2E Automated Test Case Generation for Web Applications Using LLM,” Proc.
- 2025 IEEE 49th Annu. Comput. Software, Appl. Conf. COMPSAC 2025, vol. 2, pp. 1281-1290, 2025,

https://doi.org/10.1109/COMPSAC65507.2025.00161.

