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Abstract: Cleft Lip and Palate (CLP) is a congenital condition that often results in atypical speech
articulation, making automatic recognition of CLP speech a challenging task. This study proposes
a deep learning-based classification system using Convolutional Neural Networks (CNN) and
Wavelet-MFCC features to distinguish speech patterns produced by CLP individuals. Specifically,
we investigate the use of two wavelet families Reverse Biorthogonal (rbiol.1) and Biorthogonal
(biorl.1)—with three decomposition strategies: single-level (L1), two-level (L2), and a combined
level (L1+2). Speech data were collected from 10 CLP patients, each pronouncing nine selected In-
donesian words ten times, resulting in 900 utterances. The audio signals were processed using
wavelet-based decomposition followed by Mel-Frequency Cepstral Coefficients (MFCC) extraction
to generate time-frequency representations of speech. The resulting features were input into a CNN
model and evaluated using 5-fold cross-validation. Experimental results show that the combined
L1+2 decomposition yields the highest classification accuracy (92.73%), sensitivity (92.97%), and
specificity (99.04%). Additionally, certain words such as “selam”, “kapak”, “baju”, “muka”, and
“abu” consistently achieved recall scores above 0.94, while “lampu” and “lembab” proved more
difficult to classify. The findings demonstrate that integrating multi-level wavelet decomposition
with CNN significantly improves the recognition of pathological speech and offers promising po-
tential for clinical diagnostic support.
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1. Introduction

Cleft lip and/or palate (CLP) is one of the most common congenital anomalies world-
wide, characterized by a separation in the upper lip and/or the roof of the mouth. This
structural deformity often results in significant speech production difficulties, including
resonance and articulation disorders. In Indonesia, the prevalence is notably high, with
approximately 50.53% of recorded cases exhibiting both cleft lip and palate simultane-
ously [1]. Speech produced by individuals with CLP typically manifests atypical vocal
quality, distorted formant transitions, and abnormal spectral features, rendering their
communication distinct from that of individuals without cleft anomalies [2].

Previous research has explored various approaches for analyzing speech signals from
individuals with cleft lip and palate (CLP), with a predominant focus on feature extraction
techniques such as Discrete Wavelet Transform (DWT) paired with traditional machine
learning classifiers like K-Nearest Neighbors (KNN). For instance, Yusuf and Dinata
(2024) demonstrated that wavelets like rbiol.1 and dmey can effectively extract statistical
features (e.g., mean, median, skewness) from CLP speech signals, achieving up to 93%
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accuracy [3]. However, these methods rely heavily on hand-crafted features and shallow
classifiers, which are often inadequate for capturing the complex and non-stationary na-
ture of pathological speech. Given this, modern deep learning models —particularly Con-
volutional Neural Networks (CNNs) offer a promising alternative due to their ability to
learn hierarchical representations directly from raw or minimally processed time-fre-
quency features, such as MFCCs derived from wavelet-transformed signals [4], [5].

Nevertheless, current research remains limited by its reliance on traditional machine
learning paradigms and has yet to fully leverage the capabilities offered by modern deep
learning architectures [6]. Given the complexity and time-variant nature of speech signals
from individuals with cleft conditions characterized by extensive variations across both
temporal and frequency domains—traditional approaches relying solely on hand-crafted
features and simple classifiers are often inadequate in capturing the intricate patterns in-
herent in such speech signals [7]. Therefore, there exists a pressing need to explore more
robust, data-driven approaches capable of autonomously learning feature representa-
tions, thereby potentially offering improved generalization capabilities and higher perfor-
mance [8].

This study aims to develop an automated speech classification system for individuals
with cleft lip and palate (CLP) using Convolutional Neural Networks (CNN) and wavelet-
based Mel-Frequency Cepstral Coefficients (MFCC). By focusing exclusively on rbiol.1
and biorl.1 wavelets, we streamline the feature extraction process while evaluating the
impact of multi-level decomposition on classification accuracy. The research seeks to pro-
vide a robust, deep learning-driven solution for CLP speech recognition, offering potential
applications in clinical diagnostics and assistive technologies.

2. Materials and Methods

The study follows a systematic five-phase pipeline (illustrated in Figure 1). First, we
acquire speech samples exclusively from CLP-affected individuals to establish our exper-
imental dataset. Subsequently, the raw audio undergoes preprocessing to enhance signal
quality through noise reduction and normalization techniques. The third phase imple-
ments our novel feature extraction approach, combining wavelet decomposition with
MECC analysis to capture both time-frequency characteristics and perceptual speech fea-
tures. These processed features then feed into our deep learning architecture, where we
employ CNN networks for pattern recognition in different experimental setups. The study
culminates in rigorous performance evaluation, utilizing standard metrics (accuracy, sen-
sitivity, specificity) to quantify each model's capability in identifying CLP-specific articu-
latory patterns.

Data Acquisition

-

Pre-Processing

-

Feature Extraction

-

Model Classification
CNN

-

Model Evaluation

Figure 1. Overview of the proposed research workflow for CLP speech classification.
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2.1. Data Acquisition

This research employed speech recordings obtained from ten participants clinically
diagnosed with cleft lip and palate (CLP). The audio corpus consists of nine carefully se-
lected Indonesian words - "Abu", "Atap", "Baju", "Kapak", "Lampu", "Lembab", "Muka",
"Paku”, and "Selam" - chosen specifically for their inclusion of bilabial plosives (/p/, /b/)
and nasals (/m/), which are particularly challenging for CLP speakers to articulate clearly.
Each participant repeated every word ten times, yielding a robust dataset of 900 utter-
ances (10 participants x 9 words x 10 repetitions). All recordings followed strict acquisition
parameters: 8 kHz sampling rate, 16-bit PCM encoding, single-channel capture, and stor-
age in uncompressed WAV format to ensure optimal signal quality for subsequent feature

extraction and analysis.
2.2. Preprocessing

The preprocessing pipeline begins with pre-emphasis filtering, a crucial step for
boosting high-frequency components in speech signals [9]. These frequencies are natu-
rally weakened during speech production, especially in CLP cases where anatomical dif-
ferences further reduce their prominence. The filter compensates for this attenuation by
enhancing rapid signal variations between consecutive samples, thereby preserving criti-
cal phonetic information that might otherwise be lost. The operation is mathematically
defined as:

y[n] = x[n] = a * x[n — 1] M

where y[n] is the output signal, x[n] is the input signal, and «a is the pre-emphasis coeffi-
cient, typically set in the range of 0.95 to 0.97.

After pre-emphasis, the speech signals undergo amplitude normalization to achieve
consistent dynamic range across all recordings. This critical step eliminates amplitude
variations caused by factors like vocal loudness, microphone positioning, or recording
conditions, preventing potential biases in downstream processing. The normalization al-
gorithm scales each signal sample by dividing it by the maximum absolute amplitude
value found in the entire recording, as expressed by:

s[n]

Snorm = m\label (2)

where s[n] represents the original signal sample and max(|s[n]|) denotes the peak ampli-
tude value.

2.3. Feature Extraction

Following preprocessing, the speech signals undergo Discrete Wavelet Transform
(DWT) to perform multiresolution analysis. The DWT provides a time-frequency
representation of the signal through scaled and translated wavelet basis functions, making
it particularly suitable for analyzing non-stationary speech signals [10], [11] .

For a discrete-time signal s[n],the DWT decomposition produces two types of
coefficients at each level:

1. Approximation coefficients (cA): Represent the signal's low-frequency
components that characterize its overall shape and trends

2. Detail coefficients (cD): Capture high-frequency components containing
information about rapid transitions and fine structural details

In this study, both cA and cD coefficients are utilized at each decomposition stage.
The selected wavelet families are rbiol.1 and biorl.1, applied under three decomposition
strategies:
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a. Level 1 Decomposition (L1)
The signal decomposed into:
e cAl (approximation, level 1)
e D1 (detail, level 1)

MECC features are computed separately from cAl and cD1. The resulting
MFCC vectors are then concatenated to form a single feature set representing
L1.

b. Level 2 Decomposition (L2)
The signal undergoes two-level decomposition:
e Firstlevel: cAl and cD1
e Second level: cA2 (approximation of cAl) and cD2 (detail of cD1)

Only the second-level coefficients (cA2 and cD2) are used for MFCC extrac-
tion. MFCCs are computed separately for cA2 and cD2, and the resulting
vectors are concatenated to form the L2 feature set.

c¢. Combined Multi-Level (L1+L2)
Features from L1 and L2 are merged by concatenation:
e MEFCC(cAl) + MFCC(cD1) + MFCC(cA2) + MFCC(cD2)

This combined vector retains both broad spectral patterns (from L1) and fine-
grained temporal details (from L2), providing the CNN with a richer
representation of CLP speech characteristics.

The one-level decomposition can be mathematically expressed as:

crfn] = " sTk] - gl2n — K] ®)

k

cD,[n] = Z s[k] - h[2n — k] 4)
k
The decomposition process utilizes two complementary filters: g[n] (low-pass) and
hin] (high-pass), which are intrinsic to each wavelet's mathematical formulation. This
investigation specifically employs rbiol.1 and biorl.1 wavelets - selected for their superior
performance in preliminary tests - across three distinct decomposition schemes: single-
level (L1), two-level (L2), and a combined multi-resolution approach (L1+L2).

These particular wavelet families were chosen due to their:

1. Demonstrated efficacy in representing time-frequency structures in biomedical
signals

2. Complementary filter characteristics that effectively capture both smooth trends
and abrupt transitions

3. Proven performance in speech pathology applications

The resulting coefficient sets (approximation cA and detail ¢D) from each
decomposition level form the foundational inputs for subsequent MFCC feature
extraction. This multi-scale analysis framework is particularly crucial for characterizing
the non-stationary articulatory patterns characteristic of CLP speech, as it simultaneously
preserves both:
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e  Broad spectral trends (via cA coefficients)
¢  Transient phonetic features (via cD coefficients)

The experimental design systematically evaluates how decomposition depth (L1 vs.
L2 vs. combined) interacts with wavelet type to influence classification accuracy, with
particular attention to the optimal representation of pathological speech characteristics.

Building upon the wavelet-derived coefficients, we implement Mel-Frequency
Cepstral Coefficients (MFCC) - the gold standard for speech feature extraction that mimics
human auditory perception. The transformation process applies uniformly to both
approximation (cA) and detail (cD) coefficients through four systematic stages:

1. Spectral Transformation: Each coefficient set undergoes FFT conversion to obtain
power spectra, transitioning from time-domain to frequency-domain
representation.

2. Perceptual Warping: The resulting spectra pass through a Mel-scaled filter bank
that replicates the human ear's nonlinear frequency sensitivity, emphasizing
perceptually relevant ranges.

3. Dynamic Range Compression: Logarithmic scaling of filter energies simulates the
logarithmic sensitivity of human loudness perception while normalizing
amplitude variations.

4.  Decorrelation: A Discrete Cosine Transform condenses the log-filter energies into
compact cepstral coefficients, with the k-th MFCC feature calculated as:

mk(m — 0.5)
T] )

M
MFCC, = Z log(E,,) - cos [
m=1
where Em represents the m-th filter's energy, MM the total filters, and kk the coefficient
index. The final feature vectors concatenate MFCCs from both cA and cD components,
preserving multi-resolution speech characteristics essential for CLP pattern recognition.

This hybrid approach leverages wavelet decomposition's temporal precision with
MECC's psychoacoustic fidelity, creating optimal features for subsequent deep learning
analysis. The combined representation proves particularly effective for capturing the
atypical spectral patterns in CLP speech while maintaining robustness to individual
articulation variations.

2.4. CNN Architecture

Convolutional Neural Networks (CNNs) have become a cornerstone in deep learning
for analyzing spatial patterns in signal and image processing. They have demonstrated
particular efficacy in speech recognition tasks[12]. By interpreting spectral representations
such as MFCCs and wavelet transforms as two-dimensional speech “images,” CNNs can
effectively leverage their inherent spatial processing capabilities to identify phonetic and
articulatory patterns.

This approach is especially valuable for analyzing Cleft Lip and Palate (CLP) speech,
where the network can autonomously learn discriminative features from wavelet-en-
hanced spectral representations without relying on manual feature engineering. The hier-
archical architecture of CNNs naturally captures both local and global patterns in the
time—frequency domain. This makes them particularly adept at detecting characteristic
articulatory distortions and non-uniform spectral features present in CLP speech.

Such spatial processing advantages allow CNNs to outperform traditional methods
in identifying the unique acoustic signatures of CLP-related speech disorders. At the same
time, they maintain robustness against the variability inherent in pathological speech pro-
duction. Furthermore, the architecture’s ability to model structural relationships across



JTIM 2025, Vol. 7 No. 3

658

frequency bands and temporal segments provides a powerful framework for analyzing
the complex, non-stationary patterns that distinguish CLP speech from typical speech pro-
duction.

Flatten

Fully Connected
Speech Signal Convolution FC
Softmax
Pre-Processing
Generating Spectogram output speech

Convl  Conv2 Conv3 Conv.. Conv..

Spectogram number of classes

Figure 2. Convolutional Neural Network (CNN) architecture designed for CLP speech recognition
using Wavelet-MFCC features.

This study employs a Convolutional Neural Network (CNN) to analyze two-
dimensional Wavelet-MFCC features, capturing spatial patterns in speech spectra that are
critical for identifying CLP-related articulatory distortions [13]. The network architecture
is structured as follows:

1. Input Layer: Processes MFCC matrices of size (Nyoef, T), where Nyo.f is the number
of coefficients and T represents time frames.

2. Convolutional Layers: Two to three layers with compact 3x3 kernels and ReLU
activation, extracting localized spectral features linked to phonetic distortions.

3. Pooling Layers: Max pooling (2x2) reduces dimensionality while retaining
perceptually significant features.

4. Flatten Layer: Converts the hierarchical feature maps into a 1D vector for
classification.

5. Dense Layer: Consolidates learned features for class discrimination.
6. Softmax Output: Generates probabilistic class predictions.

This architecture is tailored to detect CLP-specific articulatory anomalies particularly
in bilabial and nasal consonants by leveraging the spatial relationships in wavelet-
enhanced spectral representations. The design emphasizes efficiency in processing non-
stationary speech patterns while maintaining discriminative power for pathological
speech classification.

2.5. Model Evaluation

This study employs a rigorous evaluation framework to assess the performance of
Convolutional Neural Networks (CNNSs) in classifying speech patterns associated with
Cleft Lip and Palate (CLP). Given the diagnostic significance of accurate articulation anal-
ysis, the evaluation prioritizes both classification accuracy and generalization capability
[14]. To ensure reliable performance estimation while mitigating overfitting, we imple-
ment 5-fold cross-validation - a robust validation technique where the dataset is parti-
tioned into five equal subsets. In each evaluation cycle, the model trains on four subsets
and validates on the remaining hold-out set, with this process systematically rotated
across all folds [15]. The final performance metrics represent averaged results across all
validation folds, yielding a comprehensive and unbiased assessment of model generali-
zability. This approach offers an optimal compromise between computational practicality
and statistical reliability, particularly for medium-sized datasets, as established in previ-
ous machine learning research. The cross-validation strategy not only validates model ef-
fectiveness but also ensures the findings are representative of the broader CLP population,
crucial for developing clinically applicable diagnostic tools.
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The model's effectiveness is quantified through four essential metrics, each providing
unique diagnostic insights critical for clinical applications:

1. Average Accuracy (cross validated)

K
1
MeanAccuracy = X Z Accuracy; (6)

i=1
2. Core Classification Metrics
TP + TN

= 7
Accuracy = o TN ¥ FP + PN 7
o __ 3
Sensitivity (Recall) TP L FN (8)
Specificity = TN ©)
pecificity = TN £ Fp
where:
TP = Correct CLP identifications
TN = Correct normal speech classifications
FpP = False CLP detections
FN = Missed CLP cases

The cross-validated approach provides robust performance estimates while mitigat-
ing dataset bias, particularly crucial given the clinical consequences of both false positives
and negatives in speech pathology assessment [16].

3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. CNN Performance

Table 1. Performance of CNN at Decomposition Level 1

Wavelet Type Accuracy % Sensitivity% Specificity%
Rbiol.1 91.44 +0.88 91.90 + 0.94 98.93 +0.09
Biorl.1 92.00 + 0.86 92.02 +0.90 99.00 + 0.09

The biorl.1 wavelet achieved the highest accuracy (92.00%) and specificity (99.00%)
at level 1, demonstrating its suitability for CLP speech classification. The rbiol.1 wavelet
also performed well, albeit with slightly lower metrics.

Table 2. Performance of CNN at Decomposition Level 2

Wavelet Type Accuracy % Sensitivity% Specificity%
Rbiol.1 90.02 + 0.93 91.04 +0.95 98.78 +0.10
Biorl.1 89.00 + 0.97 89.58 +0.96 98.63 +0.12

The Rbiol.1 wavelet balanced superioriry across all metrics at level 2 despite lower
performance than the previous level.

Table 3. Performance of CNN at Decomposition Levels 1 and 2

Wavelet Type Accuracy % Sensitivity% Specificity%

Rbiol.1 92.73+0.85 92.88 +0.89 99.04 + 0.08
Biorl.1 92.33+0.85 92.97 +0.89 99.04 + 0.08
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The combined-level wavelet decomposition (Level 1+2) demonstrates superior per-
formance compared to single-level approaches, achieving peak classification metrics for
both wavelet types. Notably, Rbiol.1 and Biorl.1 yield identical accuracy (92.33% =+ 0.85)
and specificity (99.04% + 0.08), with Biorl.1 showing marginally better sensitivity (92.97%
+0.89 vs. 92.88% + 0.89).

Wavelet-Level

= RBIOL.1_LV1
= RBIOL.1_LV2
10 mmm RBIOL1_LV1+2
= BIOR1.1_LV1
= BIOR1.1_LV2
= BIORL1_LV1+2

Average Recall

& & 3
& o« & & L4 £

Figure 3. Average Recall per Words for Different Wavelet Decomposition Levels

Based on the average recall visualization, it can be concluded that the Wavelet-MFCC
configuration combining decomposition levels (L1+2) consistently yields better perfor-
mance across most words. Additionally, words such as “selam”, “kapak”, and “baju”
demonstrate consistently high recall, while “lampu” and “lembab” remain challenging to
classify accurately. The performance differences between RBIO1.1 and BIOR1.1 further
suggest that the choice of wavelet type significantly influences the effectiveness of the
speech recognition system for individuals with CLP.

4. Discussion

The experimental results reveal several important insights about wavelet-based CLP
speech classification:

1. The combined Level 1+2 approach consistently outperformed single-level
decompositions, achieving the highest accuracy (92.33%) and specificity (99.04%)
for both wavelet types. This demonstrates that integrating multiple resolution
levels provides more comprehensive feature representation, capturing both broad
spectral trends (Level 1) and fine-grained details (Level 2) essential for identifying
CLP speech patterns.

2. The exceptional specificity scores (>99%) across all configurations indicate
remarkable reliability in distinguishing normal speech from CLP cases. This is
particularly valuable for clinical applications where false positives could lead to
unnecessary interventions. The high sensitivity (~93%) further confirms the
model's ability to detect genuine pathology.

3. While both wavelets performed comparably in the combined configuration,
Biorl.1 showed marginally better sensitivity (92.97% vs 92.88%), suggesting
slightly better detection of true CLP cases. The minimal performance difference
between wavelets in Level 1+2 indicates that decomposition strategy may be more
critical than wavelet selection when using multi-level approaches.
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4. The tight confidence intervals (+0.85-0.89) demonstrate robust model stability,
particularly important for clinical deployment. This consistency holds across all
evaluation metrics, suggesting reliable performance on unseen data.

5. The words “Selam”, “baju”, “kapak”, “muka”, and “abu” consistently achieved
recall scores above 0.94 across nearly all wavelet and decomposition
configurations. This indicates that the Wavelet-MFCC features effectively capture
strong and distinctive patterns in these words, regardless of the wavelet type or
decomposition level used.

6. '"Lampu"and "lembab" exhibited the lowest recall scores, falling below 0.90 in most
configurations and approaching 0.80 in some cases. This may be attributed to the
articulation complexity experienced by individuals with CLP when pronouncing
double consonants or nasal-vowel combinations, or due to acoustic similarities
between certain word classes.

5. Conclusion

This study presented a deep learning-based approach for classifying speech from in-
dividuals with cleft lip and palate (CLP) using Convolutional Neural Networks (CNN)
and Wavelet-MFCC features derived from rbiol.1 and biorl.1 wavelets. The experimental
results demonstrate that multi-level wavelet decomposition, particularly the combination
of level 1 and level 2 (L1+2), consistently enhances classification performance across most
target words. Notably, words such as “selam”, “baju”, “kapak”, “muka”, and “abu” ex-
hibited recall scores exceeding 0.94 across nearly all configurations, indicating the robust-
ness of the proposed feature extraction method in capturing salient speech patterns. Con-
versely, words like “lampu” and “lembab” posed greater classification challenges, poten-
tially due to complex articulation or acoustic similarity between classes.

The findings further highlight that the choice of wavelet significantly affects recog-
nition accuracy, with rbiol.1 and biorl.1 each showing strengths depending on the word
and decomposition level used. Overall, the integration of wavelet-based MFCC and CNN
proves to be a promising framework for pathological speech recognition, offering poten-
tial applications in automated screening tools and speech therapy assistance for individ-
uals with CLP.
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