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Abstract: Cleft Lip and Palate (CLP) is a congenital condition that often results in atypical speech 
articulation, making automatic recognition of CLP speech a challenging task. This study proposes 
a deep learning-based classification system using Convolutional Neural Networks (CNN) and 
Wavelet-MFCC features to distinguish speech patterns produced by CLP individuals. Specifically, 
we investigate the use of two wavelet families Reverse Biorthogonal (rbio1.1) and Biorthogonal 
(bior1.1)—with three decomposition strategies: single-level (L1), two-level (L2), and a combined 
level (L1+2). Speech data were collected from 10 CLP patients, each pronouncing nine selected In-
donesian words ten times, resulting in 900 utterances. The audio signals were processed using 
wavelet-based decomposition followed by Mel-Frequency Cepstral Coefficients (MFCC) extraction 
to generate time-frequency representations of speech. The resulting features were input into a CNN 
model and evaluated using 5-fold cross-validation. Experimental results show that the combined 
L1+2 decomposition yields the highest classification accuracy (92.73%), sensitivity (92.97%), and 
specificity (99.04%). Additionally, certain words such as “selam”, “kapak”, “baju”, “muka”, and 
“abu” consistently achieved recall scores above 0.94, while “lampu” and “lembab” proved more 
difficult to classify. The findings demonstrate that integrating multi-level wavelet decomposition 
with CNN significantly improves the recognition of pathological speech and offers promising po-
tential for clinical diagnostic support. 
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1. Introduction 

Cleft lip and/or palate (CLP) is one of the most common congenital anomalies world-
wide, characterized by a separation in the upper lip and/or the roof of the mouth. This 
structural deformity often results in significant speech production difficulties, including 
resonance and articulation disorders. In Indonesia, the prevalence is notably high, with 
approximately 50.53% of recorded cases exhibiting both cleft lip and palate simultane-
ously [1]. Speech produced by individuals with CLP typically manifests atypical vocal 
quality, distorted formant transitions, and abnormal spectral features, rendering their 
communication distinct from that of individuals without cleft anomalies [2]. 

Previous research has explored various approaches for analyzing speech signals from 
individuals with cleft lip and palate (CLP), with a predominant focus on feature extraction 
techniques such as Discrete Wavelet Transform (DWT) paired with traditional machine 
learning classifiers like K-Nearest Neighbors (KNN). For instance, Yusuf and Dinata 
(2024) demonstrated that wavelets like rbio1.1 and dmey can effectively extract statistical 
features (e.g., mean, median, skewness) from CLP speech signals, achieving up to 93% 
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accuracy [3]. However, these methods rely heavily on hand-crafted features and shallow 
classifiers, which are often inadequate for capturing the complex and non-stationary na-
ture of pathological speech. Given this, modern deep learning models—particularly Con-
volutional Neural Networks (CNNs) offer a promising alternative due to their ability to 
learn hierarchical representations directly from raw or minimally processed time-fre-
quency features, such as MFCCs derived from wavelet-transformed signals [4], [5]. 

Nevertheless, current research remains limited by its reliance on traditional machine 
learning paradigms and has yet to fully leverage the capabilities offered by modern deep 
learning architectures [6]. Given the complexity and time-variant nature of speech signals 
from individuals with cleft conditions characterized by extensive variations across both 
temporal and frequency domains—traditional approaches relying solely on hand-crafted 
features and simple classifiers are often inadequate in capturing the intricate patterns in-
herent in such speech signals [7]. Therefore, there exists a pressing need to explore more 
robust, data-driven approaches capable of autonomously learning feature representa-
tions, thereby potentially offering improved generalization capabilities and higher perfor-
mance [8]. 

This study aims to develop an automated speech classification system for individuals 
with cleft lip and palate (CLP) using Convolutional Neural Networks (CNN) and wavelet-
based Mel-Frequency Cepstral Coefficients (MFCC). By focusing exclusively on rbio1.1 
and bior1.1 wavelets, we streamline the feature extraction process while evaluating the 
impact of multi-level decomposition on classification accuracy. The research seeks to pro-
vide a robust, deep learning-driven solution for CLP speech recognition, offering potential 
applications in clinical diagnostics and assistive technologies. 

2. Materials and Methods 

The study follows a systematic five-phase pipeline (illustrated in Figure 1). First, we 
acquire speech samples exclusively from CLP-affected individuals to establish our exper-
imental dataset. Subsequently, the raw audio undergoes preprocessing to enhance signal 
quality through noise reduction and normalization techniques. The third phase imple-
ments our novel feature extraction approach, combining wavelet decomposition with 
MFCC analysis to capture both time-frequency characteristics and perceptual speech fea-
tures. These processed features then feed into our deep learning architecture, where we 
employ CNN networks for pattern recognition in different experimental setups. The study 
culminates in rigorous performance evaluation, utilizing standard metrics (accuracy, sen-
sitivity, specificity) to quantify each model's capability in identifying CLP-specific articu-
latory patterns. 

 
Figure 1. Overview of the proposed research workflow for CLP speech classification. 
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2.1. Data Acquisition 

This research employed speech recordings obtained from ten participants clinically 
diagnosed with cleft lip and palate (CLP). The audio corpus consists of nine carefully se-
lected Indonesian words - "Abu", "Atap", "Baju", "Kapak", "Lampu", "Lembab", "Muka", 
"Paku", and "Selam" - chosen specifically for their inclusion of bilabial plosives (/p/, /b/) 
and nasals (/m/), which are particularly challenging for CLP speakers to articulate clearly. 
Each participant repeated every word ten times, yielding a robust dataset of 900 utter-
ances (10 participants × 9 words × 10 repetitions). All recordings followed strict acquisition 
parameters: 8 kHz sampling rate, 16-bit PCM encoding, single-channel capture, and stor-
age in uncompressed WAV format to ensure optimal signal quality for subsequent feature 
extraction and analysis. 

2.2. Preprocessing 

The preprocessing pipeline begins with pre-emphasis filtering, a crucial step for 
boosting high-frequency components in speech signals [9]. These frequencies are natu-
rally weakened during speech production, especially in CLP cases where anatomical dif-
ferences further reduce their prominence. The filter compensates for this attenuation by 
enhancing rapid signal variations between consecutive samples, thereby preserving criti-
cal phonetic information that might otherwise be lost. The operation is mathematically 
defined as: 

𝑦[𝑛] = 	𝑥[𝑛] − 	𝛼	 ∗ 	𝑥[𝑛	 − 	1] (1) 

where y[n]	is the output signal, x[n] is the input signal, and α is the pre-emphasis coeffi-
cient, typically set in the range of 0.95 to 0.97. 

After pre-emphasis, the speech signals undergo amplitude normalization to achieve 
consistent dynamic range across all recordings. This critical step eliminates amplitude 
variations caused by factors like vocal loudness, microphone positioning, or recording 
conditions, preventing potential biases in downstream processing. The normalization al-
gorithm scales each signal sample by dividing it by the maximum absolute amplitude 
value found in the entire recording, as expressed by: 

𝑆!"#$ =
𝑠[𝑛]

𝑚𝑎𝑥|𝑠[𝑛]| \𝑙𝑎𝑏𝑒𝑙
(2) 

where s[n] represents the original signal sample and max(|s[n]|) denotes the peak ampli-
tude value. 

2.3. Feature Extraction 

Following preprocessing, the speech signals undergo Discrete Wavelet Transform 
(DWT) to perform multiresolution analysis. The DWT provides a time-frequency 
representation of the signal through scaled and translated wavelet basis functions, making 
it particularly suitable for analyzing non-stationary speech signals [10], [11] . 

For a discrete-time signal s[n],the DWT decomposition produces two types of 
coefficients at each level: 

1. Approximation coefficients (cA): Represent the signal's low-frequency 
components that characterize its overall shape and trends 

2. Detail coefficients (cD): Capture high-frequency components containing 
information about rapid transitions and fine structural details 

In this study, both cA and cD coefficients are utilized at each decomposition stage. 
The selected wavelet families are rbio1.1 and bior1.1, applied under three decomposition 
strategies: 
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a. Level 1 Decomposition (L1) 

The signal decomposed into: 

• cA1 (approximation, level 1) 

• cD1 (detail, level 1) 

MFCC features are computed separately from cA1 and cD1. The resulting 
MFCC vectors are then concatenated to form a single feature set representing 
L1. 

b. Level 2 Decomposition (L2) 

The signal undergoes two-level decomposition: 

• First level: cA1 and cD1 

• Second level: cA2 (approximation of cA1) and cD2 (detail of cD1) 

Only the second-level coefficients (cA2 and cD2) are used for MFCC extrac-
tion. MFCCs are computed separately for cA2 and cD2, and the resulting 
vectors are concatenated to form the L2 feature set. 

c. Combined Multi-Level (L1+L2) 

Features from L1 and L2 are merged by concatenation: 

• MFCC(cA1) + MFCC(cD1) + MFCC(cA2) + MFCC(cD2) 

This combined vector retains both broad spectral patterns (from L1) and fine-
grained temporal details (from L2), providing the CNN with a richer 
representation of CLP speech characteristics. 

The one-level decomposition can be mathematically expressed as: 

𝑐𝐴%[𝑛] ==𝑠[𝑘]
&

⋅ 𝑔[2𝑛 − 𝑘] (3) 

𝑐𝐷%[𝑛] ==𝑠[𝑘]
&

⋅ ℎ[2𝑛 − 𝑘] (4) 

The decomposition process utilizes two complementary filters: 𝑔[n] (low-pass) and 
h[n] (high-pass), which are intrinsic to each wavelet's mathematical formulation. This 
investigation specifically employs rbio1.1 and bior1.1 wavelets - selected for their superior 
performance in preliminary tests - across three distinct decomposition schemes: single-
level (L1), two-level (L2), and a combined multi-resolution approach (L1+L2). 

These particular wavelet families were chosen due to their: 

1. Demonstrated efficacy in representing time-frequency structures in biomedical 
signals 

2. Complementary filter characteristics that effectively capture both smooth trends 
and abrupt transitions 

3. Proven performance in speech pathology applications 

The resulting coefficient sets (approximation cA and detail cD) from each 
decomposition level form the foundational inputs for subsequent MFCC feature 
extraction. This multi-scale analysis framework is particularly crucial for characterizing 
the non-stationary articulatory patterns characteristic of CLP speech, as it simultaneously 
preserves both: 
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• Broad spectral trends (via cA coefficients) 

• Transient phonetic features (via cD coefficients) 

The experimental design systematically evaluates how decomposition depth (L1 vs. 
L2 vs. combined) interacts with wavelet type to influence classification accuracy, with 
particular attention to the optimal representation of pathological speech characteristics. 

Building upon the wavelet-derived coefficients, we implement Mel-Frequency 
Cepstral Coefficients (MFCC) - the gold standard for speech feature extraction that mimics 
human auditory perception. The transformation process applies uniformly to both 
approximation (cA) and detail (cD) coefficients through four systematic stages: 

1. Spectral Transformation: Each coefficient set undergoes FFT conversion to obtain 
power spectra, transitioning from time-domain to frequency-domain 
representation. 

2. Perceptual Warping: The resulting spectra pass through a Mel-scaled filter bank 
that replicates the human ear's nonlinear frequency sensitivity, emphasizing 
perceptually relevant ranges. 

3. Dynamic Range Compression: Logarithmic scaling of filter energies simulates the 
logarithmic sensitivity of human loudness perception while normalizing 
amplitude variations. 

4. Decorrelation: A Discrete Cosine Transform condenses the log-filter energies into 
compact cepstral coefficients, with the k-th MFCC feature calculated as: 

MFCCk = = log(𝐸$)
(

$)%

⋅ cos N
π𝑘(𝑚 − 0.5)

𝑀 T (5) 

where Em represents the m-th filter's energy, MM the total filters, and kk the coefficient 
index. The final feature vectors concatenate MFCCs from both cA and cD components, 
preserving multi-resolution speech characteristics essential for CLP pattern recognition. 

This hybrid approach leverages wavelet decomposition's temporal precision with 
MFCC's psychoacoustic fidelity, creating optimal features for subsequent deep learning 
analysis. The combined representation proves particularly effective for capturing the 
atypical spectral patterns in CLP speech while maintaining robustness to individual 
articulation variations. 

2.4. CNN Architecture 

Convolutional Neural Networks (CNNs) have become a cornerstone in deep learning 
for analyzing spatial patterns in signal and image processing. They have demonstrated 
particular efficacy in speech recognition tasks[12]. By interpreting spectral representations 
such as MFCCs and wavelet transforms as two-dimensional speech “images,” CNNs can 
effectively leverage their inherent spatial processing capabilities to identify phonetic and 
articulatory patterns. 

This approach is especially valuable for analyzing Cleft Lip and Palate (CLP) speech, 
where the network can autonomously learn discriminative features from wavelet-en-
hanced spectral representations without relying on manual feature engineering. The hier-
archical architecture of CNNs naturally captures both local and global patterns in the 
time–frequency domain. This makes them particularly adept at detecting characteristic 
articulatory distortions and non-uniform spectral features present in CLP speech. 

Such spatial processing advantages allow CNNs to outperform traditional methods 
in identifying the unique acoustic signatures of CLP-related speech disorders. At the same 
time, they maintain robustness against the variability inherent in pathological speech pro-
duction. Furthermore, the architecture’s ability to model structural relationships across 
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frequency bands and temporal segments provides a powerful framework for analyzing 
the complex, non-stationary patterns that distinguish CLP speech from typical speech pro-
duction. 

 
Figure 2. Convolutional Neural Network (CNN) architecture designed for CLP speech recognition 
using Wavelet-MFCC features. 

This study employs a Convolutional Neural Network (CNN) to analyze two-
dimensional Wavelet-MFCC features, capturing spatial patterns in speech spectra that are 
critical for identifying CLP-related articulatory distortions [13]. The network architecture 
is structured as follows: 

1. Input Layer: Processes MFCC matrices of size (Nₖₒₑf, T), where Nₖₒₑf is the number 
of coefficients and T represents time frames. 

2. Convolutional Layers: Two to three layers with compact 3×3 kernels and ReLU 
activation, extracting localized spectral features linked to phonetic distortions. 

3. Pooling Layers: Max pooling (2×2) reduces dimensionality while retaining 
perceptually significant features. 

4. Flatten Layer: Converts the hierarchical feature maps into a 1D vector for 
classification. 

5. Dense Layer: Consolidates learned features for class discrimination. 

6. Softmax Output: Generates probabilistic class predictions. 

This architecture is tailored to detect CLP-specific articulatory anomalies particularly 
in bilabial and nasal consonants by leveraging the spatial relationships in wavelet-
enhanced spectral representations. The design emphasizes efficiency in processing non-
stationary speech patterns while maintaining discriminative power for pathological 
speech classification. 

2.5. Model Evaluation 

This study employs a rigorous evaluation framework to assess the performance of 
Convolutional Neural Networks (CNNs) in classifying speech patterns associated with 
Cleft Lip and Palate (CLP). Given the diagnostic significance of accurate articulation anal-
ysis, the evaluation prioritizes both classification accuracy and generalization capability 
[14]. To ensure reliable performance estimation while mitigating overfitting, we imple-
ment 5-fold cross-validation - a robust validation technique where the dataset is parti-
tioned into five equal subsets. In each evaluation cycle, the model trains on four subsets 
and validates on the remaining hold-out set, with this process systematically rotated 
across all folds [15]. The final performance metrics represent averaged results across all 
validation folds, yielding a comprehensive and unbiased assessment of model generali-
zability. This approach offers an optimal compromise between computational practicality 
and statistical reliability, particularly for medium-sized datasets, as established in previ-
ous machine learning research. The cross-validation strategy not only validates model ef-
fectiveness but also ensures the findings are representative of the broader CLP population, 
crucial for developing clinically applicable diagnostic tools. 
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The model's effectiveness is quantified through four essential metrics, each providing 
unique diagnostic insights critical for clinical applications: 

1. Average Accuracy (cross validated) 

𝑀𝑒𝑎𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝐾=Accuracy*

+

*)%

(6) 

2. Core Classification Metrics 

Accuracy =
TP + TN

TP + TN + FP + FN
(7) 

Sensitivity	(Recall) =
TP

TP + FN
(8) 

Specificity =
TN

TN + FP
(9) 

where: 

TP  = Correct CLP identifications 
TN   = Correct normal speech classifications 
FP   = False CLP detections 
FN   = Missed CLP cases 

 

The cross-validated approach provides robust performance estimates while mitigat-
ing dataset bias, particularly crucial given the clinical consequences of both false positives 
and negatives in speech pathology assessment [16]. 

3. Results 

This section may be divided by subheadings. It should provide a concise and precise 
description of the experimental results, their interpretation, as well as the experimental 
conclusions that can be drawn. 

3.1. CNN Performance  

Table 1. Performance of CNN at Decomposition Level 1 

Wavelet Type Accuracy % Sensitivity% Specificity% 
Rbio1.1 91.44 ± 0.88 91.90 ± 0.94 98.93 ± 0.09 
Bior1.1 92.00 ± 0.86 92.02 ± 0.90 99.00 ± 0.09 

The bior1.1 wavelet achieved the highest accuracy (92.00%) and specificity (99.00%) 
at level 1, demonstrating its suitability for CLP speech classification. The rbio1.1 wavelet 
also performed well, albeit with slightly lower metrics. 

Table 2. Performance of CNN at Decomposition Level 2 

Wavelet Type Accuracy % Sensitivity% Specificity% 
Rbio1.1 90.02 ± 0.93 91.04 ± 0.95 98.78 ± 0.10 
Bior1.1 89.00 ± 0.97 89.58 ± 0.96 98.63 ± 0.12 

The Rbio1.1 wavelet balanced superioriry across all metrics at level 2 despite lower 
performance than the previous level. 

Table 3. Performance of CNN at Decomposition Levels 1 and 2 

Wavelet Type Accuracy % Sensitivity% Specificity% 
Rbio1.1 92.73 ± 0.85 92.88 ± 0.89 99.04 ± 0.08 
Bior1.1 92.33 ± 0.85 92.97 ± 0.89 99.04 ± 0.08 
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The combined-level wavelet decomposition (Level 1+2) demonstrates superior per-
formance compared to single-level approaches, achieving peak classification metrics for 
both wavelet types. Notably, Rbio1.1 and Bior1.1 yield identical accuracy (92.33% ± 0.85) 
and specificity (99.04% ± 0.08), with Bior1.1 showing marginally better sensitivity (92.97% 
± 0.89 vs. 92.88% ± 0.89). 

 

Figure 3. Average Recall per Words for Different Wavelet Decomposition Levels 

Based on the average recall visualization, it can be concluded that the Wavelet-MFCC 
configuration combining decomposition levels (L1+2) consistently yields better perfor-
mance across most words. Additionally, words such as “selam”, “kapak”, and “baju” 
demonstrate consistently high recall, while “lampu” and “lembab” remain challenging to 
classify accurately. The performance differences between RBIO1.1 and BIOR1.1 further 
suggest that the choice of wavelet type significantly influences the effectiveness of the 
speech recognition system for individuals with CLP. 

4. Discussion 

The experimental results reveal several important insights about wavelet-based CLP 
speech classification: 

1. The combined Level 1+2 approach consistently outperformed single-level 
decompositions, achieving the highest accuracy (92.33%) and specificity (99.04%) 
for both wavelet types. This demonstrates that integrating multiple resolution 
levels provides more comprehensive feature representation, capturing both broad 
spectral trends (Level 1) and fine-grained details (Level 2) essential for identifying 
CLP speech patterns. 

2. The exceptional specificity scores (>99%) across all configurations indicate 
remarkable reliability in distinguishing normal speech from CLP cases. This is 
particularly valuable for clinical applications where false positives could lead to 
unnecessary interventions. The high sensitivity (~93%) further confirms the 
model's ability to detect genuine pathology. 

3. While both wavelets performed comparably in the combined configuration, 
Bior1.1 showed marginally better sensitivity (92.97% vs 92.88%), suggesting 
slightly better detection of true CLP cases. The minimal performance difference 
between wavelets in Level 1+2 indicates that decomposition strategy may be more 
critical than wavelet selection when using multi-level approaches. 
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4. The tight confidence intervals (±0.85-0.89) demonstrate robust model stability, 
particularly important for clinical deployment. This consistency holds across all 
evaluation metrics, suggesting reliable performance on unseen data. 

5. The words “Selam”, “baju”, “kapak”, “muka”, and “abu” consistently achieved 
recall scores above 0.94 across nearly all wavelet and decomposition 
configurations. This indicates that the Wavelet-MFCC features effectively capture 
strong and distinctive patterns in these words, regardless of the wavelet type or 
decomposition level used. 

6. "Lampu" and "lembab" exhibited the lowest recall scores, falling below 0.90 in most 
configurations and approaching 0.80 in some cases. This may be attributed to the 
articulation complexity experienced by individuals with CLP when pronouncing 
double consonants or nasal-vowel combinations, or due to acoustic similarities 
between certain word classes. 

5. Conclusion 

This study presented a deep learning-based approach for classifying speech from in-
dividuals with cleft lip and palate (CLP) using Convolutional Neural Networks (CNN) 
and Wavelet-MFCC features derived from rbio1.1 and bior1.1 wavelets. The experimental 
results demonstrate that multi-level wavelet decomposition, particularly the combination 
of level 1 and level 2 (L1+2), consistently enhances classification performance across most 
target words. Notably, words such as “selam”, “baju”, “kapak”, “muka”, and “abu” ex-
hibited recall scores exceeding 0.94 across nearly all configurations, indicating the robust-
ness of the proposed feature extraction method in capturing salient speech patterns. Con-
versely, words like “lampu” and “lembab” posed greater classification challenges, poten-
tially due to complex articulation or acoustic similarity between classes. 

The findings further highlight that the choice of wavelet significantly affects recog-
nition accuracy, with rbio1.1 and bior1.1 each showing strengths depending on the word 
and decomposition level used. Overall, the integration of wavelet-based MFCC and CNN 
proves to be a promising framework for pathological speech recognition, offering poten-
tial applications in automated screening tools and speech therapy assistance for individ-
uals with CLP.  
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