Prediksi Cuaca Berdasarkan Variasi miliVolt Xylem Lannea coromandelica Menggunakan Model Artificial Neural Network Backpropagation

Penulis

  • Iskandar Iskandar Program Studi Sistem Informasi, Universitas Pohuwato
  • Stella Elizabeth Warokka Program Studi Sistem Informasi, Universitas Pohuwato

DOI:

https://doi.org/10.35746/jtim.v7i3.727

Kata Kunci:

Artificial Neural Network, Backpropagation, Xylem mV, Weather Prediction, Lannea coromandelica

Abstrak

The rate of fluid flow in tree xylem generates an electrical potential difference (mV), which serves as a physiological indicator for monitoring plant conditions and predicting weather. This study aimed to develop a regression model based on Artificial Neural Network Backpropagation (ANN-BP) to estimate weather parameters from mV data of Lannea coromandelica. Electrical potential data were collected continuously for seven days using xylem-mounted sensors and synchronized with actual weather data, including air temperature, relative humidity, and light intensity. ANN-BP models employing three training algorithms (traingdx, traincgb, and traingd) were compared using mean squared error (MSE) as the evaluation metric. The traincgb algorithm achieved the best performance with an MSE of 3.29 × 10??. These findings demonstrate that variations in xylem electrical potential can reliably predict weather conditions in real time, supporting the development of an energy-efficient, biologically based weather monitoring system for precision agriculture and climate change mitigation.

Unduhan

Data unduhan tidak tersedia.

Referensi

Iskandar, “REPRESENTASI MILIVOLT PADA BATANG LANNEA COROMANDELICA MENGUKUR ADANYA LAJU GLUKOSA, AIR TANAH SAAT PERUBAHAN SUHU LINGKUNGAN,” Jurnal Locus Penelitian dan Pengabdian, vol. 3, no. 1, pp. 1–21, 2024, https://doi.org/10.58344/locus.v3i1.2414.

M. M. S. Sitti, “Pemodelan Pengaruh Faktor Cuaca Terhadap Curah Hujan Ekstrem di Kota Makassar Pada 13 Februari 2023,” 2024. http://repository.unhas.ac.id:443/id/eprint/41941

P. Prabhu, B. Karthikeyan, R. R. R. M. Vannan, and A. Balaji, “Mechanical, thermal and morphological analysis of hybrid natural and glass fiber-reinforced hybrid resin nanocomposites,” Biomass Convers Biorefin, vol. 14, no. 4, pp. 4941–4955, 2024, https://doi.org/10.1007/s13399-022-02632-9.

J. N. Gunjal, M. S. Patil, and K. P. Chittam, “Lannea coromandelica: An overview,” International Journal of Pharmaceutical and Biological Science Archive, vol. 9, no. 1, pp. 64–75, 2021, [https://ijpba.in/index.php/ijpba/article/view/181

M. Tarakeswara Naidu, D. Premavani, S. Suthari, and M. Venkaiah, “Assessment of tree diversity in tropical deciduous forests of Northcentral Eastern Ghats, India,” Geology, Ecology, and Landscapes, vol. 2, no. 3, pp. 216–227, 2018, https://doi.org/10.1080/24749508.2018.1452479.

R. K. Chaturvedi and A. S. Raghubanshi, “Effect of soil moisture on composition and diversity of trees in tropical dry forest,” MOJ Ecology & Environmental Sciences, vol. 3, no. 1, pp. 1–4, 2018, https://doi.org/10.15406/mojes.2018.03.00059.

J. Balaji, “Artificial Neural Network, Theory and Application.”

F. Marini, “Artificial Neural Networks (ANNs),” 2022.

B. Baliga, “Fundamental of Artificial Neural Network.”

D. K. Pratihar, Soft computing: fundamentals and applications. Alpha Science International, Ltd, 2013. https://dl.acm.org/doi/abs/10.5555/2566770

F. Yuliantono, “Characteristics of Diode and Recessing (Karakteristik Dioda dan Penyearah),” 2021.

M. F. Aulia and A. Mulyadi, “Rangkaian Penyearah Gelombang Penuh Dengan Modifikasi IC Untuk Mengurangi Output Ripple Gelombang DC,” Energy: Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 13, no. 2, pp. 131–140, 2023, http://dx.doi.org/10.51747/energy.v13i2.1779.

S. M. Siagian, G. W. Jaya, and I. Nurhidayati, “Analisis Jumlah Muatan Listrik Serta Energi Pada Kapasitor Berdasarkan Konstanta Dielektrik Suatu Material,” ORBITA: Jurnal Pendidikan dan Ilmu Fisika, vol. 7, no. 1, pp. 176–180, 2021, https://doi.org/10.31764/orbita.v7i1.4420.

G. Anelli, “Introduction to Switched Capacitor Circuits,” ReCALL, vol. 1, no. December, p. 47, 2003.

N. T. Luchia, E. Tasia, I. Ramadhani, A. Rahmadeyan, and R. Zahra, “Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 1, no. 2, pp. 62–70, 2024, https://doi.org/10.57152/predatecs.v1i2.864.

M. AZHIMA, “Penerapan Metode Backpropagation Neural Network untuk Klasifikasi Penyakit Stroke,” Penerapan Metode Backpropagation Neural Network untuk Klasifikasi Penyakit Stroke, vol. 4, no. 6, pp. 3013–3021, 2024, http://repository.uin-suska.ac.id/id/eprint/81776.

A. Wanto, “Optimasi prediksi dengan algoritma backpropagation dan conjugate gradient beale-powell restarts,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 3, no. 3, pp. 370–380, 2017, https://doi.org/10.25077/TEKNOSI.v3i3.2017.370-380.

D. Wungguli, B. P. Silalahi, and S. Guritman, “Metode steepest descent dengan ukuran langkah baru untuk pengoptimuman nirkendala,” MILANG Journal of Mathematics and Its Applications, vol. 14, no. 1, pp. 1–10, 2015, https://doi.org/10.29244/jmap.14.1.1-10.

A. Wanto, “Prediksi Angka Partisipasi Sekolah dengan Fungsi Pelatihan Gradient Descent With Momentum & Adaptive LR,” Jurnal Ilmu Komputer dan Informatika (ALGORITMA), vol. 3, no. 1, pp. 9–20, 2019, http://dx.doi.org/10.30829/algoritma.v3i1.4431.

R. Ramadana, A. P. Windarto, and D. Suhendro, “Comparative Analysis of Gradient Descent Learning Algorithms in Artificial Neural Networks for Forecasting Indonesian Rice Prices,” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 8, no. 4, pp. 466–478, 2024, https://doi.org/10.29207/resti.v8i4.5822.

Z. M. M. Amin and S. A. K. Ali, “RETRACTED: Climate change prediction using artificial neural network,” in IOP Conference Series: Earth and Environmental Science, 2022, p. 12003. https://iopscience.iop.org/article/10.1088/1755-1315/961/1/012003/meta

M. Masriana, M. Napitupulu, and S. T. Gonggo, “Pengaruh Konsentrasi Getah Pohon Kayu Jawa (Lannea Coromandelica) Terhadap Konduktivitas Membran Blend Kitosan-Polivinil Alkohol-Litium Sebagai Membran Elektrolit,” Jurnal Akademika Kimia, vol. 6, no. 3, p. 154, Jan. 2018, doi: 10.22487/j24775185.2017.v6.i3.9421.

Z. Maulia, “Inventarisasi Teknik Pembibitan Gaharu (Gyrinops versteegii Gilg.) di Jawa Timur dan Pemanfaatannya sebagai Karya Ilmiah Populer,” 2015. https://repository.unej.ac.id/xmlui/handle/123456789/74863.

C. Herawati, R. Batubara, and E. B. M. Siregar, “Perubahan Kimia Kayu Pada Gubal Gaharu (Aquilaria Malaccensis Lamk.) hasil Rekayasa)(Wood Chemical Changes in Gubal Agarwood (Aquilaria Malaccensis Lamk.) Engineered,” Peronema Forestry Science Journal, vol. 2, no. 1, pp. 117–125, 2013.

Diterbitkan

2025-08-09

Terbitan

Bagian

Articles

Cara Mengutip

[1]
I. Iskandar dan S. E. Warokka, “Prediksi Cuaca Berdasarkan Variasi miliVolt Xylem Lannea coromandelica Menggunakan Model Artificial Neural Network Backpropagation”, jtim, vol. 7, no. 3, hlm. 616–625, Agu 2025, doi: 10.35746/jtim.v7i3.727.