Segmentasi Hotel di Lombok Menggunakan Metode Klasterisasi Berbasis Harga, Fasilitas, dan Jarak Lokasi
DOI:
https://doi.org/10.35746/jtim.v7i3.722Kata Kunci:
Unsupervised Learning, Tourist Consumers, Data Modeling, Lodging Services, Cluster EvaluationAbstrak
Lombok is one of Indonesia's premier tourist destinations, experiencing significant growth in the tourism sector. The increasing number of visitors has directly impacted the hospitality industry, resulting in a wide variety of hotels with diverse characteristics based on price, rating, and customer reviews. This diversity poses a challenge in effectively understanding hotel market segmentation. This study aims to cluster hotels in Lombok using clustering techniques to gain deeper insights into hotel segmentation patterns. The research employs the K-Means Clustering algorithm within the CRISP-DM framework, which includes the phases of Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The dataset comprises attributes such as nightly price, hotel rating, and the number of reviews, all collected from online platforms. The effectiveness of the clustering process is evaluated using the Silhouette Score metric. The results show that the K-Means algorithm delivers the best performance, with a Silhouette Score of 0.9042 (90%), indicating well-defined and distinct clusters. Therefore, K-Means Clustering is recommended as the most effective method for grouping hotels based on the attributes used in this study. This research provides valuable insights into hotel segmentation patterns in Lombok and can serve as a reference for hospitality industry stakeholders in formulating more targeted marketing strategies and business decisions. Future research may consider incorporating additional attributes such as geographic location and tourist seasons to enhance the clustering quality.
Unduhan
Referensi
C. Kirana, “Analisis Daya Saing Sektor Pariwisata Provinsi Nusa Tenggara Barat,” Chandradewi Kirana, vol. 15, no. 1, hal. 37–48, 2024., https://repository.uinjkt.ac.id/dspace/handle/123456789/81576
L. P. Naibaho, “Penerapan Data Mining Pada Tingkat Penghunian Kamar Pada Hotel Berbintang Berdasarkan Provinsi,” J. JPILKOM ( J. Penelit. Ilmu Komput. ), vol. 1, no. 1, hal. 33–41, 2023, https://jpilkom.org/index.php/journal/article/view/15
T. Doni, “Property Market Analysis Of The Hotel Sector In Central Lombok Regency,” vol. 4, no. 3, hal. 51–63, 2023, https://doi.org/10.46799/jst.v4i3.708.
I. G. K. K. Putra dan I. G. W. S. Dharma, “Application of The K-Means Clustering Method To Search For Potential Tourists of Bendesa Hotel,” TIERS Inf. Technol. J., vol. 4, no. 1, hal. 8–15, 2023, https://doi.org/10.38043/tiers.v4i1.4297.
N. Dwitiyanti, E. Windia Ambarsari, dan N. Selvia, “Algoritma K-Means untuk Mengelompokkan Hotel di Sekitar Wilayah Indonesia yang Rentan Gempa Bumi,” RESOLUSI?: Rekayasa Teknik Informatika dan Informasi, vol. 4, no. 2, hal. 180-185, 2023, https://djournals.com/resolusi/article/view/1477
L. L. Terbit, MANAJEMEN PERHOTELAN?: Konsep , Organisasi dan Operasional, no. April. 2025.
A. Wahyudi, “Pengelompokan Tamu Hotel Dengan Menggunakan Metode K-Means Clustering,” J. Nas. Teknol. Komput., vol. 3, no. 4, hal. 268–277, 2023, https://doi.org/10.61306/jnastek.v3i4.107.
I. Pii, N. Suarna, dan N. Rahaningsih, “Penerapan Data Mining Pada Penjualan Produk Pakaian Dameyra Fashion Menggunakan Metode K-Means Clustering,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, hal. 423–430, 2023, https://doi.org/10.36040/jati.v7i1.6336.
M. Artana, “Penerapan Data Mining Pada Algotirma Hierarchical Clustering Tentang Pengelolaan Mitra Perjalanan Wisatawan Bali Backpaker,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, hal. 2903–2909, 2024, https://doi.org/10.36040/jati.v7i4.7284.
K. Data, M. Jenis, B. Pada, dan T. H. E. Hive, “Klasterisasi Data Mining Jenis Booking Pada Hotel,” Jurnal Ilmu Komputer Revolusioner, vol. 8, no. 10, 2024, https://oaj.jurnalhst.com/index.php/jikr/article/view/5139.
A. Saputra dan K. Ali, “Analisis Kebijakan Pariwisata Terhadap Pengelolaan Objek Wisata Di Kabupaten Samosir,” War. Dharmawangsa, vol. 14, no. 4, hal. 564–584, 2020, https://doi.org/10.46576/wdw.v14i4.889.
I. B. P. A. A. Wijaya, I. N. Juniawan, I. B. K. D. S. Negara, dan D. H. Budyanto, “Analisis Sentimen Untuk Hotel Merusaka Dengan Menggunakan Metode Support Vector Machine (SVM),” Journal Of Informatics Engineering And Technology, vol. 03, no. 2, hal. 10–17, 2022, https://jietech.triatmamulya.ac.id/index.php/Jietech/article/view/76.
H. Hamdani dan D. Hartama, “Implementation of Data Analysis Hotel Rating Levels in Bali Using the K-Means Algo-rithm and Decision Tree,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 10, no. 3, hal. 467–474, 2024, https://doi.org/10.33330/jurteksi.v10i3.2894.
Y. A. Singgalen, “Penerapan Metode CRISP-DM dalam Klasifikasi Data Ulasan Pengunjung Destinasi Danau Toba Menggunakan Algoritma Naïve Bayes Classifier (NBC) dan Decision Tree (DT),” J. Media Inform. Budidarma, vol. 7, no. 3, hal. 1551, 2023, https://doi.org/10.30865/mib.v7i3.6461.
N. G. A. Dasriani, M. Mayadi, dan A. Anggrawan, “Klasterisasi Lokasi Promosi PMB Dengan Fuzzy C-means Masa Pandemi Covid 19,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, hal. 327–336, 2022, https://doi.org/10.30812/matrik.v21i2.1832.
A. R. Raharja, Jayadi, A. Pramudianto, dan Y. Muchsam, “Penerapan Algoritma Decision Tree dalam Klasifikasi Data ‘Framingham’ Untuk Menunjukkan Risiko Seseorang Terkena Penyakit Jantung dalam 10 Tahun Mendatang,” Technol. J., vol. 1, no. 1, 2024, https://doi.org/10.62872/cwgzp962.
M. Fajar, S. Adam, B. Putra, S. I. Puteri, A. Fajrissiddiq, dan L. Sani, “Eksplorasi dan Analisis Data Mining untuk Prediksi Pola Konsumen Menggunakan Teknik Klasifikasi dan Clustering,” Prosiding Seminar Nasional Teknologi Informasi, Mekatronika, dan Ilmu Komputer, vol.4, pp. 10-24, 2025, https://prosiding.sentimeter.nusaputra.ac.id/index.php/prosiding/article/view/66.
P. Rahayu dkk., Buku Ajar Data Mining, vol. 1, no. January 2024. 2024.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Eldy Waliyamursida, Dadang Priyanto, Galih Hendro Martono

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.




