Implementasi Machine Learning untuk Mendeteksi Penyakit Katarak menggunakan Kombinasi Ekstraksi Fitur dan Neural Network Berdasarkan Citra
Abstract
According to data from the World Health Organization (WHO), more than 1.3 billion people worldwide experience visual impairments, with Cataracts being one of the main causes. Cataracts are an eye condition characterized by clouding of the lens, which can lead to blindness if left untreated. This study aims to accurately detect Cataracts using a combination of feature extraction and neural networks, utilizing digital fundus images. The Dataset used consists of 600 fundus images divided into 80% for training and 20% for testing. The feature extraction process is performed to identify distinctive characteristics of the images relevant to Cataract diagnosis. These features are then analyzed by a neural network to recognize patterns indicative of Cataracts. To optimize performance, this study implements a hypertuning process. Before tuning, the initial model achieved an accuracy of 0.83, with precision, recall, F1-score of 0.83, and an AUC of 0.92. After four stages of hypertuning, the model’s performance improved progressively. The first tuning achieved an accuracy of 0.85, with precision, recall, and F1-score of 0.85, and an AUC of 0.93. In the second tuning, accuracy increased to 0.88, with precision of 0.87, recall of 0.88, F1-score of 0.87, and an AUC of 0.93. The third tuning maintained an accuracy of 0.88, with precision improving to 0.90, recall at 0.87, F1-score of 0.88, and an AUC of 0.94. The fourth tuning delivered the best results, with an accuracy of 0.90, precision of 0.92, recall of 0.89, F1-score of 0.90, and an AUC of 0.94. These results demonstrate that the hypertuning process plays a significant role in improving model performance.
Downloads
References
D. Hananta Firdaus, B. Imran, L. Darmawan Bakti, and E. Suryadi, “Klasifikasi Penyakit Katarak Pada Mata Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Web,” J. Kecerdasan Buatan dan Teknol. Inf., vol. 1, no. 3, pp. 18–26, 2022, doi: https://doi.org/10.69916/jkbti.v1i3.6.
R. Nurlizah, A. eko Minarno, and G. W. Wicaksono, “Klasifikasi Penyakit Katarak Pada Mata Manusia Menggunakan Metode Convolutional Neural Network,” J. Repos., vol. 4, no. 4, pp. 491–496, 2024, doi: https://doi.org/10.22219/repositor.v4i4.32285.
A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: https://doi.org/10.31294/ijcit.v5i1.7951.
S. Bhat, S. Mosalagi, T. Bhalerao, P. Katkar, and R. Pitale, “Cataract Eye Prediction using Machine Learning,” Int. J. Comput. Appl., vol. 176, no. 35, pp. 46–48, 2020, doi: https://doi.org/10.5120/ijca2020920441.
F. Ramadhani, A. Satria, and S. Salamah, “Implementasi Algoritma Convolutional Neural Network dalam Mengidenti-fikasi Dini Penyakit pada Mata Katarak,” sudo J. Tek. Inform., vol. 2, no. 4, pp. 167–175, 2023, doi: https://doi.org/10.56211/sudo.v2i4.408.
K. C. Karamihan, I. D. F. Agustino, R. B. B. Bionesta, F. C. Tuason, S. V. E. Arellano, and P. A. M. Esguerra, “SBC-Based Cataract Detection System Using Deep Convolutional Neural Network With Transfer Learning Algorithm,” Int. J. Recent Technol. Eng., 2019, doi: https://doi.org/10.35940/ijrte.b3368.078219.
O. Zisimopoulos et al., “DeepPhase: Surgical Phase Recognition in CATARACTS Videos,” 2018, https://link.springer.com/chapter/10.1007/978-3-030-00937-3_31.
W. M. Diyana Zaki, H. A. Mutalib, L. A. Ramlan, A. Hussain, and A. Mustapha, “Towards a Connected Mobile Cataract Screening System: A Future Approach,” J. Imaging, 2022, doi: https://doi.org/10.3390/jimaging8020041.
X. Liu et al., “Localization and Diagnosis Framework for Pediatric Cataracts Based on Slit-Lamp Images Using Deep Features of a Convolutional Neural Network,” PLoS One, 2017, doi: https://doi.org/10.1371/journal.pone.0168606.
X. Wu et al., “Universal Artificial Intelligence Platform for Collaborative Management of Cataracts,” Br. J. Ophthalmol., 2019, doi: https://doi.org/10.1136/bjophthalmol-2019-314729.
Y. Elloumi, “Cataract Grading Method Based on Deep Convolutional Neural Networks and Stacking Ensemble Learning,” Int. J. Imaging Syst. Technol., 2022, doi: https://doi.org/10.1002/ima.22722.
R. Hidayat, S. Agustiani, S. K. Wildah, A. Mustopa, and R. A. Safitri, “Penerapan Metode Pembelajaran Menggunakan Ekstraksi Fitur dan Algoritma Klasifikasi untuk Identifikasi Pengenalan Iris,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: https://doi.org/10.31294/jtk.v4i2.
I. I. Ridho, G. Mahalisa, D. R. Sari, and I. Fikri, “METODE NEURAL NETWORK UNTUK PENENTUAN AKURASI PREDIKSI HARGA RUMAH,” Technologia, vol. 1, no. 1, pp. 2020–2022, 2022, doi: http://dx.doi.org/10.31602/tji.v13i1.6252.
F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,” J. Ilm. Inform., vol. 9, no. 02, pp. 75–81, 2021, doi: https://doi.org/10.33884/jif.v9i02.3755.
R. Z. Fadillah, A. Irawan, M. Susanty, and I. Artikel, “Data Augmentasi Untuk Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat Indonesia (BISINDO),” J. Inform., vol. 8, no. 2, pp. 208–214, 2021, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/10768
D. Juniati and A. E. Suwanda, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Retina Menggunakan Dimensi Fraktal Box Counting Dan Fuzzy K-Means,” Prox. J. Penelit. Mat. dan Pendidik. Mat., vol. 5, no. 1, pp. 10–18, 2022, doi: https://doi.org/10.30605/proximal.v5i1.1623.
C. U. P. Negara and K. Firdausy, “Pengolahan Citra menggunakan Metode Otsu dan Hough Circle Transform untuk Prototipe Alat Sortir Buah Apel,” Semin. Nas. Apl. Teknol. Inf., pp. 1–7, 2019, https://journal.uii.ac.id/Snati/article/view/13393.
B. Imran, L. D. Samsumar, and A. Subki, “Combination of gray level co-occurrence matrix and artificial neural networks for classification of COVID-19 based on chest X-ray images,” Int. J. Artif. Intell., vol. 13, no. 2, pp. 1625–1631, 2024, doi: https://doi.org/10.11591/ijai.v13.i2.pp1625-1631.
R. Kurniawan, R. H. Nasution, S. Marwah, and B. Nasution, “Penerapan Metode Gray Level Co-Occurrence Matrix Dan Knn Untuk Mendeteksi Tingkat Kematangan Buah Mengkudu,” J. Sci. Soc. Res., vol. 4307, no. 2, pp. 765–772, 2024, [Online]. Available: https://jurnal.goretanpena.com/index.php/JSSR/article/view/1836
A. F. Suahati, A. A. Nurrahman, and O. Rukmana, “Penggunaan Jaringan Syaraf Tiruan – Backpropagation dalam Memprediksi Jumlah Mahasiswa Baru,” J. Media Tek. dan Sist. Ind., vol. 6, no. 1, p. 21, 2022, doi: https://doi.org/10.35194/jmtsi.v6i1.1589.
R. W. Hutabri, R. Magdalena, and Y. N. Fu’adah, “PERANCANGAN SISTEM DETEKSI KATARAK MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS (PCA) DAN KNEAREST NEIGHBOR (K-NN) Analisis Performansi Sistem Deteksi Katarak,” Semin. Nas. Inov. dan Apl. Teknol. di Ind. 2018, pp. 321–327, 2018, [Online]. Available: https://ejournal.itn.ac.id/index.php/seniati/article/view/1390
Copyright (c) 2025 Maspaeni, Bahtiar Imran, Alfian Hidayat, Surni Erniwati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.