Implementasi Data Mining dalam Menentukan Prediksi Status Resiko Persalinan pada Ibu Hamil menggunakan Algoritma C4.5

  • Dwidya Poernareksa Perekam Dan Informasi Kesehatan, Sekolah Tinggi Ilmu Kesehatan Husada Borneo
  • Nina Rahmadiliyani Perekam Dan Informasi Kesehatan, Sekolah Tinggi Ilmu Kesehatan Husada Borneo
Keywords: Data Mining, Pregnancy, Precision, Recall, Accurate, Prediction Algorithm, Decision Tree

Abstract

High-risk of pregnancy refers to a situation where pregnancy will have a negative impact on the safety of the mother and baby. Since the beginning of pregnancy, high-risk pregnancy can be predicted by various factors such as the physical and psychological condition of the pregnant woman, nutritional intake, and congenital diseases. According to WHO, Indonesia ranks 5th in premature birth rates with 675,700 babies and this figure is 15.5% of the total birth rate in Indonesia. Estimates of high-risk pregnancies can be observed from patient medical record data, in this case, pregnancy data from pregnant women. Data that is processed into knowledge can be processed through the data mining process. The main objective of this study is to determine how data mining is implemented in determining the prediction of the birth process in pregnant women using the C4.5 algorithm. This research can provide knowledge about the combination of the Two Crows model and the C.45 algorithm to predict the risk status of childbirth in pregnant women. The C.45 algorithm is one of the most popular prediction techniques because it is easy for humans to interpret. The data analysis technique in this study uses the Two Crows model which is a development of the CRISP-DM model. The flow of the Two Crows model includes Understanding Business Problem, Building Data Mining Database, Data Explore, Prepare Data For Modeling, Building Model, and Evaluate Model. The data taken is examination data on pregnant women at the Health Center. Based on the results of the study, it was found that the highest root of the application of the C4.5 algorithm is in the height variable. The evaluation was carried out using a confusion matrix. From the evaluation results, it was found that the accuracy value reached 98.44%, the precision value reached 96%, and the recall value reached 100%.

Downloads

Download data is not yet available.

References

M. P. S. D. Ningsih and B. Noranita, “Status Proses Persalinan Menggunakan Algoritma C4.5,” J Masy Inform, vol. 9, no. 1, pp. 1–13, 2018, doi: 10.14710/jmasif.9.1.31478.

E. Ekayanti and M. Mutmainah, “ANALISIS KEHAMILAN RESIKO 4T PADA IBU HAMIL DI DESA PASIRGINTUNG KECAMATAN CIKULUR KABUPATEN LEBAK TAHUN 2023,” Bina Gener J Kesehat, vol. 15, no. 2, pp. 58–70, Mar. 2024, doi: 10.35907/bgjk.v15i2.319.

M. Y. Pusadan, A. Ghifari, and Y. Anshori, “Implementasi Data Mining untuk Prediksi Status Proses Persalinan pada Ibu Hamil Menggunakan Algoritma Naive Bayes,” Technomedia J, vol. 8, no. 1 Juni, pp. 137–153, 2023, doi: 10.33050/tmj.v8i1.1980.

V. Khoirunnisa and S. Lestari, “Implementasi Klasifikasi Kehamilan Beresiko Dengan Metode Naive Bayes Pada Pusk-esmas Kelurahan Malaka Jaya,” J Indones Manaj Inform dan Komun, vol. 4, no. 3, pp. 1680–1693, 2023, doi: 10.35870/jimik.v4i3.396.

E. N. Ekwonwune, C. I. Ubochi, and A. E. Duroha, “Data Mining as a Technique for Healthcare Approach,” Int J Commun Netw Syst Sci, vol. 15, no. 09, pp. 149–165, 2022, doi: 10.4236/ijcns.2022.159011.

H. Amalia, R. Rahmadanti, A. Syaiin, S. Salsabila4, Y. Yunita, and S. Sriyadi, “Prediksi Resiko Kesehatan Ibu Hamil Dengan Menggunakan Metode Decision Tree,” Swabumi, vol. 11, no. 1, pp. 48–53, 2023, doi: 10.31294/swabumi.v11i1.15270.

B. I. Nugroho, N. P. Lestari, R. D. Kurniawan, and G. Gunawan, “Tinjauan Pustaka Sistematis: Data Mining Dalam Bidang Kesehatan,” J Ekon Teknol dan Bisnis, vol. 1, no. 1, pp. 14–27, 2022, doi: 10.57185/jetbis.v1i1.2.

A. Saifudin, “Metode Data Mining Untuk Seleksi Calon Mahasiswa PADA PENERIMAAN MAHASISWA BARU DI UNIVERSITAS PAMULANG,” vol. 10, no. 1, pp. 25–36, 2018, doi: https://doi.org/10.24853/jurtek.10.1.25-36.

Q. Hasanah, A. Andrianto, and M. A. Hidayat, “Sistem Informasi Posyandu Ibu Hamil dengan Penerapan Klasifikasi Resiko Kehamilan Menggunakan Metode Naïve Bayes,” Berk Sainstek, vol. 6, no. 1, p. 1, 2018, doi: 10.19184/bst.v6i1.7554.

H. Amalia, R. Z. Agungsyah, F. A. Lestari, A. F. Lestari, A. Puspita, and S. Sriyadi, “Peningkatan Kinerja Metode Naive Bayes Dengan Particle Swarm Object Untuk Dataset Pemilihan Metode Melahirkan,” Swabumi, vol. 11, no. 2, pp. 156–161, 2023, doi: 10.31294/swabumi.v11i2.17138.

H. A. Damar Rani and S. Zuhri, “Sistem Prediksi Kondisi Kelahiran Bayi menggunakan Klasifikasi Naïve Bayes,” Joined J (Journal Informatics Educ, vol. 3, no. 2, p. 48, 2020, doi: 10.31331/joined.v3i2.1432.

P. Perner, Advances in Data Mining. Applications and Theoretical Aspects: 9th Industrial Conference, ICDM 2009, Leipzig, Germany, July 20 - 22, 2009. Proceedings. in Lecture Notes in Computer Science. Leipzig: Springer Berlin Heidelberg, 2009. [Online]. Available: https://books.google.co.id/books?id=GRZYV4sDzH0C

M. Yunus, H. Ramadhan, D. R. Aji, and A. Yulianto, “Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indonesia Pintar (KIP),” Paradig - J Komput dan Inform, vol. 23, no. 2, 2021, doi: https://doi.org/10.31294/p.v23i2.11395.

T. Crows, Introduction to Data Mining and Knowledge Discovery. USA: Two Crows Corporation, 1999. [Online]. Available: papers2://publication/uuid/87DAF9E6-09CC-4831-8AB5-F0F97F467BFA

B. Muhammad, “Implementasi Data Mining untuk Prediksi Standar Hidup Layak Berdasarkan Tingkat Kesehatan dan Pendidikan Masyarakat,” J SISKOM-KB (Sistem Komput dan Kecerdasan Buatan), vol. 2, no. 2, pp. 33–37, 2019.

F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Klasifikasi Pencemaran Nama Baik Di Media Sosial Twitter,” Komputa J Ilm Komput dan Inform, vol. 12, no. 1, pp. 73–82, 2023, doi: 10.34010/komputa.v12i1.9418.

M. B. Hanif, H. A. D. Rani, A. Rifai, and Gallet Guntoro Setiaji, “Komparasi Metode Naive Bayes dan C4 . 5 Pada Klasifikasi Persalinan Prematur,” Joined J, vol. 5, no. 1, pp. 54–65, 2022, doi: https://doi.org/10.31331/joined.v5i1.2242.

M. D. Setyaningsih, A. Wahyuni, and A. Y. Kuntoro, “Implementasi Data Mining C4.5 Untuk Klasifikasi Faktor Resiko Kesehatan Pada Ibu Hamil,” J Ilmu Komput dan Bisnis, vol. 13, no. 2a, pp. 67–77, 2022, doi: 10.47927/jikb.v13i2a.376.

Published
2025-01-16
How to Cite
[1]
D. Poernareksa and N. Rahmadiliyani, “Implementasi Data Mining dalam Menentukan Prediksi Status Resiko Persalinan pada Ibu Hamil menggunakan Algoritma C4.5”, jtim, vol. 7, no. 1, pp. 123-132, Jan. 2025.
Section
Articles