Node-RED dan Robotik pada Sistem Penyiraman Otomatis berbasis IoT

  • Wahyu Kurnia Dewanto Politeknik Negeri Jember
  • Aji seto Arifianto Politeknik Negeri Jember
  • Hariyono Rakhmad Politeknik Negeri Jember
  • Hermawan Arief Putranto Politeknik Negeri Jember
  • Muhammad Hafidh Firmansyah Politeknik Negeri Jember
Keywords: nodered, IoT, Agriculture

Abstract

The Internet of Things (IoT) technology offers great potential in the agricultural sector, especially in the automation of plant irrigation systems. Many farmers face challenges with water use efficiency and real-time land condition monitoring. Manual irrigation systems often lead to water wastage. Currently, many centralized irrigation systems use a one-by-one watering approach, requiring multiple sensors to monitor each plant's condition, making them less efficient. To address this issue, this research developed an automated irrigation system controlled by Node-RED and robotic technology. The system is designed to require only one sensor to monitor the entire agricultural area, while still efficiently distributing water to many plants. Node-RED manages data from soil moisture and environmental temperature sensors, then activates the watering robot to distribute water according to the plants' needs. The system was tested by comparing manual and automatic methods using polybags. The soil moisture sensor sends data to Node-RED, which activates the watering robot when soil moisture falls below a set threshold. Test results show that the automated system can save up to 20% of water usage compared to manual methods, while keeping soil moisture within the optimal range. This system also enables real-time monitoring and control, providing a more efficient, timely, and resource-saving solution.

Downloads

Download data is not yet available.

References

M. T. Yaseen, F. Y. Abdullah, and M. H. Almallah, “Smart Green Farm,” 2020 7th International Conference on Electrical and Electronics Engineering, ICEEE 2020, pp. 299–302, 2020, doi: 10.1109/ICEEE49618.2020.9102495.

A. D. Asham, M. Hanaa, B. Alyoubi, A. M. Badawood, and I. Alharbi, “A simple integrated smart green home design,” 2017 Intelligent Systems Conference, IntelliSys 2017, vol. 2018-Janua, no. September, pp. 194–197, 2018, doi: 10.1109/IntelliSys.2017.8324290.

J. Morales-García, F. Terroso-Sáenz, and J. M. Cecilia, “A multi-model deep learning approach to address pre-diction imbalances in smart greenhouses,” Comput Electron Agric, vol. 216, Jan. 2024, doi: 10.1016/j.compag.2023.108537.

P. K. Tripathy, A. K. Tripathy, A. Agarwal, and S. P. Mohanty, “MyGreen: An IoT-Enabled Smart Greenhouse for Sustainable Agriculture,” IEEE Consumer Electronics Magazine, vol. 10, no. 4, pp. 57–62, Jul. 2021, doi: 10.1109/MCE.2021.3055930.

V. Y. Chandrappa, B. Ray, N. Ashwatha, and P. Shrestha, “Spatiotemporal modeling to predict soil moisture for sustainable smart irrigation,” Internet of Things (Netherlands), vol. 21, Apr. 2023, doi: 10.1016/j.iot.2022.100671.

R. Togneri et al., “Soil moisture forecast for smart irrigation: The primetime for machine learning,” Expert Syst Appl, vol. 207, Nov. 2022, doi: 10.1016/j.eswa.2022.117653.

G. Bekaroo and A. Santokhee, “Power consumption of the Raspberry Pi: A comparative analysis,” 2016 IEEE In-ternational Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, EmergiTech 2016, no. August, pp. 361–366, 2016, doi: 10.1109/EmergiTech.2016.7737367.

J. Abidin, R. Darmawan, and M. A. Farel, “Perbandingan Alat Penyiram Tanaman Otomatis Menggunakan Ar-duino Uno dan Raspberry Pi 3,” Conference on Electrical Engineering, Telematics, Industrial Technology, and Creative Media 2019, pp. 54–57, 2019, Accessed: Sep. 26, 2024. [Online]. Available: https://conferences.ittelkom-pwt.ac.id/index.php/centive/article/view/89

D. Hercog, T. Lerher, M. Truntič, and O. Težak, “Design and Implementation of ESP32-Based IoT Devices,” Sensors, vol. 23, no. 15, Aug. 2023, doi: 10.3390/s23156739.

P. Dan, P. Tanaman, O. Berbasi, I. Rinaldi, Y. Oktarina, and T. Dewi, “Implementasi Fuzzy logic dalam Mengen-dalikan Input dan Output pada Penyiraman dan Pemupukan Tanaman Otomatis Berbasi IoT,” vol. 3, no. 2, pp. 65–73, 2022, [Online]. Available: http://journal.isas.or.id/index.php/JASENS

M. Arwin Wijaya et al., “PURWARUPA PENYIRAMAN OTOMATIS DENGAN ARSITEKTUR MQTT DAN LOGIKA FUZZY SUGENO UNTUK MENINGKATKAN KEEFEKTIFAN MANAJEMEN PENYIRAMAN TANAMAN (STUDI KASUS : ITERA),” JTIULM, vol. 5, no. 2, pp. 49–56, Oct. 2020, Accessed: Sep. 24, 2024. [Online]. Available: https://jtiulm.ti.ft.ulm.ac.id/index.php/jtiulm/article/view/55

S. Mulyono, M. Qomaruddin, and M. Syaiful Anwar, “Penggunaan Node-RED pada Sistem Monitoring dan Kontrol Green House berbasis Protokol MQTT,” Jurnal Transistor Elektro dan Informatika (TRANSISTOR EI, vol. 3, no. 1, pp. 31–44, 2018, Accessed: Sep. 26, 2024. [Online]. Available: https://jurnal.unissula.ac.id/index.php/EI/article/view/3055

I. Islamy and L. M. Wisudawati, “Sistem Monitoring Smart Garden Tanaman Cabai Berbasis IoT Menggunakan Protokol MQTT, Node Red, dan Telegram Bot,” Jurnal Teknotan, vol. 17, no. 3, p. 197, Dec. 2023, doi: 10.24198/jt.vol17n3.6.

N. Nikolov, “Research of MQTT, CoAP, HTTP and XMPP IoT Communication protocols for Embedded Systems,” 2020 29th International Scientific Conference Electronics, ET 2020 - Proceedings, pp. 18–21, 2020, doi: 10.1109/ET50336.2020.9238208.

J. Carlos Díaz-P Erez and T. E. Eaton, “Eggplant (Solanum melongena L.) Plant Growth and Fruit Yield as Affected by Drip Irrigation Rate,” HORTSCIENCE, vol. 50, no. 11, pp. 1709–1714, 2015, Accessed: Sep. 26, 2024. [Online]. Available: https://journals.ashs.org/hortsci/view/journals/hortsci/50/11/article-p1709.xml

Published
2024-11-29
How to Cite
[1]
W. K. Dewanto, A. seto Arifianto, H. Rakhmad, H. A. Putranto, and M. H. Firmansyah, “Node-RED dan Robotik pada Sistem Penyiraman Otomatis berbasis IoT”, jtim, vol. 6, no. 3, pp. 354-367, Nov. 2024.
Section
Articles