Implementasi Algoritma Term Frequency Inverse Document Frequency (TF-IDF) dalam Menganalisis Sentimen Masyarakat Terhadap Covid-19 Varian Omicron

  • Fiqih Ainul Qhabib Universitas Nahdlatul Ulama Blitar
  • Abd. Charis Fauzan Universitas Nahdlatul Ulama Blitar
  • Harliana Harliana Universitas Nahdlatul Ulama Blitar
Keywords: Analysis of Omicron Sentiment in Indonesia, Term Frequency Inverse Document Frequency (TF-IDF), Netlytic

Abstract

The latest variant was detected on November 24, 2021, namely the Omicron variant WHO said, Omicron was one of the Covid-19 variants that had mutated, with a very fast spread rate. The Government Republic of Indonesia has officially banned all foreigners from entering Indonesia, both those who have done so travel or come from countries exposed to the Omicron variant. This study uses data that has been processed using Netlytic online website. Netlytic analyzes text and visualizes public online conversations on social media sites. text preprocessing has several stages, namely case folding, tokenizing, stopword, stemming. Data analysis is the stage to classify words into positive, negative, or neutral sentiment classes. the last step is calculating the weights using the tf-idf method. It is proven from the DF value which reaches 628 words in one document, the D/DF value is 0.39 and the log D/DF is -0.41. The TF-IDF method can be taken in outline, namely it is easy to calculate frequency and relevance occurrence of words in a document. The TF-IDF method produces output according to user specifications, but this method takes a long time for large amounts of data.

Downloads

Download data is not yet available.

References

H. Amalia, “Omicron penyebab COVID-19 sebagai variant of concern,” Jurnal Biomedika dan Kesehatan, vol. 4, no. 4, pp. 139–141, Dec. 2021, doi: 10.18051/JBiomedKes.2021.v4.139-141.

A. Susilo et al., “TINJAUAN PUSTAKA Review of Current Literatures,” 2022.

G. Widyanto and N. A. Putri, “KECENDERUNGAN PEMBERITAAN PEMBATASAN IZIN MASUK WNA KE INDONE-SIA AKIBAT MUNCULNYA VARIAN BARU COVID-19 OMICRON REPORTING TENDENCIES RESTRICTIONS ON WNA ENTRY PERMITS TO INDONESIA DUE TO THE EMERGENCE OF NEW VARIANT COVID-19 OMICRON,” 2021.

Kawilarang Renne, “Covid Omicron menyebar cepat di Indonesia, kapan akan berakhir? - Dua tahun pandemi dalam data,” BBC News Indonesia, Mar. 02, 2022.

M. A. Rofiqi, Abd. C. Fauzan, A. P. Agustin, and A. A. Saputra, “Implementasi Term-Frequency Inverse Document Fre-quency (TF-IDF) Untuk Mencari Relevansi Dokumen Berdasarkan Query,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 1, no. 2, pp. 58–64, Dec. 2019, doi: 10.28926/ilkomnika.v1i2.18.

L. Meneses, “Gruzd, Anatoliy, project lead. Netlytic. App.,” Renaiss Reform, vol. 42, no. 1, p. 352, Sep. 2019, doi: 10.7202/1064533ar.

F. Prasetyo Nugroho and Y. Dwi Pambudi, “Analisa Brand Reputation Wisata Daerah Menggunakan Sentimen Data Twitter (Studi Kasus:Museum Sangiran Kabupaten Sragen),” 2020.

K. Hikmah and Abd. C. Fauzan,” Sentiment Analysis of Vaccine Booster during Covid-19: Indonesian Netizen Perspec-tive Based on Twitter Dataset” JKSI Jurnal Teknologi komputeer dan Sistem Informasi, Vol. 5, no. 2 April 2022

I. Sunni, “Analisis Sentimen dan Ekstraksi Topik Penentu Sentimen pada Opini Terhadap Tokoh Publik Cite this pa-per.” [Online]. Available: www.140dev.com

S. Khairunnisa, A. Adiwijaya, and S. al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.

N. Tri Romadloni, I. Santoso, S. Budilaksono, and M. Ilmu Komputer STMIK Nusa Mandiri Jakarta, “PERBANDINGAN METODE NAIVE BAYES, KNN DAN DECISION TREE TERHADAP ANALISIS SENTIMEN TRANSPORTASI KRL COM-MUTER LINE.”

S. Ernawati and R. Wati, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel,” vol. VI, no. 1, 2018, [Online]. Available: https://www.trustpilot.com/categories/tr

D. Eva Dila Purnama Sari, Y. Arum Sari, and M. Tanzil Furqon, “Pembentukan Daftar Stopword menggunakan Zipf Law dan Pembobotan Augmented TF-Probability IDF pada Klasifikasi Dokumen Ulasan Produk,” 2020. [Online]. Available: http://j-ptiik.ub.ac.id

P. Gede Surya Cipta Nugraha and N. Wayan Wardani, “Stemming Dokumen Teks Bahasa Bali Dengan Metode Rule Base Approach,” 2020. [Online]. Available: http://jurnal.mdp.ac.idjatisi@mdp.ac.idceivedJune1ssedJu

W. E. Nurjanah, R. Setya Perdana, and M. A. Fauzi, “Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Pembobotan Jumlah Retweet,” 2017. [Online]. Available: http://j-ptiik.ub.ac.id

R. Kosasih and A. Alberto, “Analisis Sentimen Produk Permainan Menggunakan Metode TF-IDF Dan Algoritma K-Nearest Neighbor,” vol. 6, no. 1, 2021, doi: 10.30743/infotekjar.v6i1.3893.

K. Hikmah and Abd. C. Fauzan,” IMPLEMENTASI ALGORITMA NAIVE BAYES DALAM ANALISIS POLARISASI OPINI MASYARAKAT TERKAIT VAKSIN COVID-19” Jurnal Teknologi dan Sistem Informasi Unlvrab, Vol. 7, no. 2 Juli 2022

L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pem-bangunan di Kota Pontianak,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 2, p. 183, Apr. 2020, doi: 10.26418/justin.v8i2.36776.

Oleh, “ARTIKEL MAKNA KONOTASI DALAM BUKU HABIS GALAU TERBITLAH MOVE ON KARYA J. SUMARDIANTA.”

R. Y. Sutrisno, Abd. C. Fauzan , F. N. Hanifa, A. Gufron, F. N. Putra” K. Hikmah and Abd. C. Fauzan,” IMPLEMENTASI ALGORITMA NAIVE BAYES DALAM ANALISIS POLARISASI OPINI MASYARAKAT TERKAIT VAKSIN COVID-19” Jurnal Teknologi dan Sistem Informasi Unlvrab, Vol. 7, no. 2 Juli 2022

Published
2023-02-23
How to Cite
[1]
F. A. Qhabib, A. C. Fauzan, and H. Harliana, “Implementasi Algoritma Term Frequency Inverse Document Frequency (TF-IDF) dalam Menganalisis Sentimen Masyarakat Terhadap Covid-19 Varian Omicron”, jtim, vol. 4, no. 4, pp. 308-318, Feb. 2023.
Section
Articles