Perbandingan Algoritma C4.5 dan Naive Bayes Dalam Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Daring
Abstract
Since the spread of Covid-19, online learning is considered the main solution for universities so that the lecture process continues to run well, but in online learning there are many obstaclesfaced by students and lecturers, as for the obstacle, namely the location of the house is not covered by the internet network, student behavior is difficult to understand. monitored and absorption of material is very lacking and the obstacles faced by campus are the difficulty of knowing how big the level of student satisfaction in online learning is, on this problem, the author wants to evaluate the online learning system by first classifying the level of student satisfaction with online learning using the C4.5 algorithm. , based on the results of data processing that is deemed less convincing, data processing is also carried out using another classification method, namely the Naive Bayes method. Based on the results of the comparison of the two algorithms, the accuracy of the algorithmNaïve Bayes is better than C4.5 by a difference of 11.77%. That the accuracy rate of the algorithmC4.5 is 58.82% with the validity test using cross validation obtained the average value for the value of Class Precision Dissatisfied 0%, Class Precision Satisfied 66.67%, Class Precision Unsatisfied 0%, Precision Class Very Dissatisfied 0%. And the value of Class Recall Dissatisfied 0%, Class Recall Satisfied 90.91%, Class Recall Unsatisfied 0%, Class Recall Very Dissatisfied 0%. While the level of accuracy using the AlgorithmNaïve Bayes with the results of 70.59% with the validity test using cross validation obtained the average value for the value of Class Precision Dissatisfied 0%, Class Precision Satisfied 76.92%, Class Precision Unsatisfied 33.33%, Class Precision Very Dissatisfied 100% and Class values Recall Dissatisfied 0%, Class Recall Satisfied 90.91%, Class Recall Less Satisfied 25%, Class Recall Very Dissatisfied 100%.
Downloads
References
[2] E. Miana, A. Ernamia, A. Herliana, A. R. Sanjaya, and A. R. Sanjaya, “ANALISIS SENTIMEN KULIAH DARING DENGAN ALGORITMA NAÏVE BAYES , K-NN DAN,” vol. 4, no. 1, pp. 70–80, 2022.
[3] I. A. Sihombing, D. Hartama, I. Parlina, I. Gunawan, and I. O. Kirana, “Analisis Keberhasilan Pembelajaran Daring pada Masa Pandemi Covid-19 menggunakan Algoritma C4.5 dan Naive Bayes,” JUKI J. Komput. dan Inform., vol. 3, no. 2, pp. 89–96, 2021, doi: 10.53842/juki.v3i2.68.
[4] F. Sistem Informasi STMIK Nusa Mandiri Jakarta Jl Damai No, W. Jati Barat, and J. Selatan, “Perbandingan Algoritma Klasifikasi Data Mining Model C4.5 Dan Naive Bayes Untuk Prediksi Penyakit Diabetes,” J. Techno Nusa Mandiri, vol. XIII, no. 1, p. 50, 2016.
[5] K. Aidi Saputra, J. Tata Hardinata, M. Ridwan Lubis, S. Retno Andani, and I. Syahputra Saragih, “Klasifikasi Algoritma C4.5 Dalam Penerapan Tingkat Kepuasan Siswa Terhadap Media Pembelajaran Online,” Media Online), vol. 1, no. 3, pp. 113–118, 2020, [Online]. Available: https://djournals.com/klik.
[6] D. R. S. P, A. P. Windarto, D. Hartama, and I. S. Damanik, “Penerapan Klasifikasi C4.5 Dalam Meningkatkan Sistem Pembelajaran Mahasiswa,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 593–597, 2019, doi: 10.30865/komik.v3i1.1665.
[7] I. Amillina and A. Qoiriah, “Penerapan Algoritma Naïve Bayes dalam Klasifikasi Tingkat Kepuasan Siswa terhadap Pembelajaran Daring,” J. Ilm. Teknol. Inf. dan Robot., vol. 3, pp. 16–23, 2021.
Copyright (c) 2022 Fatmawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.