Klasifikasi Kebakaran Hutan Menggunakan Metode K-Nearest Neighbor : Studi Kasus Hutan Provinsi Kalimantan Barat
Abstract
A very wide forest could cause natural disaster such as forest fire that resulting losses to inhabitant, one of which effecting health and safety. West Kalimantan province is one of the province in Indonesia that has wide area of forest with 8,200,000 ha of forest and 1,600,000 ha of peatland all over the Kalimantan Island. Therefor this study is focusing on the data of west Kalimantan province forest. The aim of the study is to classify forest fire in West Kalimantan Province and followed by designing a REST API application of forest fire detector. In hope that in future, the application will be useful to prevent forest fire in the area of west Kalimantan Province. K-Nearest Neighbor method and balltree algorithm are used in this study to collect and process the data. The sample that are collected about 30% of 14,201 data with accuracy up to 92% with K = 18.
Downloads
References
“Kalimantan Barat,” INCAS. http://incas.menlhk.go.id/id/data/west-kalimantan/ (diakses Des 20, 2021).
A. Yusuf, Hapsoh, S. H. Siregar, dan D. R. Nurrochmat, “Analisis Kebakaran Hutan Dan Lahan Di Provinsi Riau | Yusuf | Dinamika Lingkungan Indonesia.” https://dli.ejournal.unri.ac.id/index.php/DL/article/view/7457/0 (diakses Des 20, 2021).
T. A. Pratiwi, M. Irsyad, R. Kurniawan, S. Agustian, dan B. S. Negara, “Klasifikasi Kebakaran Hutan Dan Lahan Menggunakan Algoritma Naïve Bayes Di Kabupaten Pelalawan,” CESS (Journal of Computer Engineering, System and Science), vol. 6, no. 1, Art. no. 1, Feb 2021, doi: 10.24114/cess.v6i1.22555.
M. R. Noviansyah, T. Rismawan, dan D. M. Midyanti, “PENERAPAN DATA MINING MENGGUNAKAN METODE K-NEAREST NEIGHBOR UNTUK KLASIFIKASI INDEKS CUACA KEBAKARAN BERDASARKAN DATA AWS (AUTOMATIC WEATHER STATION) (STUDI KASUS: KABUPATEN KUBU RAYA),” Coding Jurnal Komputer dan Aplikasi, vol. 6, no. 2, Art. no. 2, Jul 2018, doi: 10.26418/coding.v6i2.26672.
S. Mutrofin, A. Izzah, A. Kurniawardhani, dan M. Masrur, “OPTIMASI TEKNIK KLASIFIKASI MODIFIED K NEAREST NEIGHBOR MENGGUNAKAN ALGORITMA GENETIKA,” Jurnal Gamma, vol. 10, no. 1, Art. no. 1, 2014, Diakses: Des 20, 2021. [Daring]. Tersedia pada: https://ejournal.umm.ac.id/index.php/gamma/article/view/2493
C. Maharani, A. A. Asrial, B. A. Purba, dan M. Miftahurrahmah, “EDUKASI DAMPAK KESEHATAN DAN UPAYA PERLINDUNGAN DIRI DARI BENCANA KABUT ASAP,” Medical Dedication (medic) : Jurnal Pengabdian kepada Masyarakat FKIK UNJA, vol. 3, no. 1, Art. no. 1, Apr 2020, doi: 10.22437/medicaldedication.v3i1.8631.
J. Yandi, T. B. Kurniawan, E. S. Negara, dan M. Akbar, “Prediksi Lokasi Titik Panas Kebaran Hutan menggunakan Model Regresion SVM (Support Vector Machine) pada Data Kebakaran Hutan Daops Manggala Agni Oki Provinsi Sumatera Selatan Tahun 2019 | Yandi | InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan.” https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/4101 (diakses Des 20, 2021).
E. BAGUS SUSANTO, “ANALISIS PERBANDINGAN ALGORITMA NAIVE BAYES DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI MULTI DATASET,” doctoral, Universitas Muhammadiyah Jember, 2019. Diakses: Des 20, 2021. [Daring]. Tersedia pada: http://repository.unmuhjember.ac.id/7131/
T. Y. Prahudaya dan A. Harjoko, “METODE KLASIFIKASI MUTU JAMBU BIJI MENGGUNAKAN KNN BERDASARKAN FITUR WARNA DAN TEKSTUR | Prahudaya | Jurnal Teknosains.” https://jurnal.ugm.ac.id/teknosains/article/view/26972 (diakses Des 20, 2021).
Y. A. Setianto, K. Kusrini, dan H. Henderi, “Penerapan Algoritma K-Nearest Neighbour Dalam Menentukan Pembinaan Koperasi Kabupaten Kotawaringin Timur,” Creative Information Technology Journal, vol. 5, no. 3, Art. no. 3, Sep 2019, doi: 10.24076/citec.2018v5i3.179.
Copyright (c) 2022 Ari Rudiyan, Akhmad Erik Dzulkifli, Khabib Munazar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.