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Abstract: Cleft is one of the most common birth defects worldwide, including in Indonesia. In In-
donesia, there are 1,596 cleft patients, with 50.53% having a cleft lip and palate (CL/P), 24.42% hav-
ing a cleft lip (CL), and 25.05% having a cleft palate (CP). Individuals with clefts encounter difficul-
ties with resonance and articulation during communication due to dysfunctions in the oral and na-
sal cavities. This study investigates various types of mother wavelets as feature extractors for cleft 
speech signals. Five different mother wavelets, namely Symlet order 2, Reverse Biorthogonal order 
1.1, Discrete Meyer, Coiflet order 1, and Biorthogonal order 1.1 are analyzed. This work aims to find 
the best type of mother wavelet. The extracted features are statistical features, such as mean, me-
dian, standard deviation, kurtosis, and skewness. The dataset used in this study consists of 200 
sound signals from 10 individuals with cleft conditions and 10 normal volunteers. To assess the 
performance of the extractor, classification is performed using K-Nearest Neighbor (KNN) and K-
Fold cross-validation. The experimental results indicate that the Reverse Biorthogonal order 1.1 
mother wavelet achieves the highest accuracy compared to other types of mother wavelet, where 
the accuracy is 93%, with sensitivity and specificity of 94% and 92%, respectively. 
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1. Introduction 

Cleft, which can manifest as cleft lip (CL), cleft palate (CP), or both (CL/P), is among 
the most frequent birth defects. The global prevalence is estimated at one in every four 
million newborns annually [1]. In Indonesia, the prevalence of CL and CP remains high. 
Data indicates that 1,596 individuals are affected by this condition, with 50.53% having 
CL/P, 24.42% having CL, and 25.05% having CP. Gender-wise, 55.95% are male and 
44.05% are female [2]. Individuals with clefts experience difficulty in forming resonance 
and articulation during communication due to velopharyngeal dysfunction [3]. This dys-
function occurs when the mouth and nasal cavities fail to effectively produce and retain 
air within the oral cavity during speech. Consequently, people with cleft exhibit different 
vocal bursts, formant transitions, and spectral characteristics compared to those without 
the condition. Additionally, every utterance produced is likely to be distorted due to un-
intended nasalization in vocal production [4]. 

Speaker recognition is a component of biometric identification, encompassing mo-
dalities such as fingerprint, face, and iris recognition. Within the realm of artificial intelli-
gence (AI), speech recognition encompasses several complex tasks, including speech 
recognition itself, speech segmentation, and speaker recognition [5]. Individuals with cleft 
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palate experience difficulties in communication, particularly with bilabial sounds like /b/, 
/m/, and /p/, which require both lips to meet [6]. In speech recognition systems, feature 
extraction is a crucial process. Features are attributes of the speech signal that are extracted 
and utilized to represent it. The characteristics of the speech signal are influenced by mor-
phological features and the speaker's habits. Morphological features include the size, vo-
cal fold structure, and length of the vocal tract, which contribute to the speaker's unique 
characteristics. Habitual characteristics are influenced by factors such as education, up-
bringing, personality, and parental influence [7]. Various methods are commonly em-
ployed for feature extraction from speech signals, including Discrete Wavelet Transfor-
mation (DWT), Mel-Frequency Cepstral Coefficient (MFCC), Gammatone Frequency 
Cepstral Coefficient (GFCC), Perceptual Linear Prediction (PLP), and Power Normalized 
Cepstral Coefficient (PNCC).  

Extensive research has been conducted on speech signals, yet investigations specifi-
cally targeting cleft speech signals remain scarce, particularly for Indonesian speech. The 
study by [8] categorizes speech signals into cleft and normal classes, comparing various 
feature extraction methods such as Mel-Frequency Cepstral Coefficients (MFCC), Jitter, 
Shimmer, the combination of MFCC and Bionic Wave Transformation (BWT), and the en-
ergy derived from BWT. The dataset comprised speech samples from 15 individuals with 
cleft conditions and 15 without, each articulating predefined words commonly used in 
speech therapy to evaluate speech quality. The system achieved 85% accuracy, 82% sensi-
tivity, and 85% specificity when using the combined MFCC and BWT methods. Another 
study compared the performance of MFCC and the Pitch Adaptive MFCC (PAMFCC) be-
tween cleft and normal speech on the vowels /a/ in the word /papa/, /i/ in the word /pipi/, 
and /u/ in the word /pupu/ [9]. The findings indicated that PAMFCC was more efficient 
in feature extraction, yielding accuracies of 83.45% for /a/, 88% for /i/, and 85% for /u/. 
Further analysis on the same dataset was conducted by [10], focusing on sinusoidal fea-
tures of words with the consonant-vowel-consonant-vowel (CVCV) structure, specifically 
"papa," "pipi," and "pupu," extracted from 30 normal and 30 cleft speech samples. Sinus-
oidal features included normalized harmonic amplitude (NA), harmonic amplitude ratio 
(HAR), and prominent harmonic frequency (PHF). The accuracy differences between the 
studies [9] and [10] were minimal.  

Another study utilized MFCC to extract features from cleft speech signals, focusing 
on the recognition of the phoneme /p/ in Indonesian [11]. The research involved three 
words: "paku," "kapak," and "atap." The dataset comprised samples from 10 individuals 
with normal speech and 10 individuals with cleft conditions. The study reported accura-
cies of 74% for "paku," 76% for "kapak," and 75% for "atap". The classification of patholog-
ical voices in [12] utilized Wavelet transform with wavelet energy as features, achieving a 
93% accuracy rate, showing that wavelet energy is effective in recognizing pathological 
voices. In [13], energy and statistical features were used for automatic voice disorder clas-
sification, employing Haar's four-level decomposition of Stationary Wavelet Transform 
(SWT) to extract features, achieving 99% accuracy. For detecting hypernasality in speech 
signals, [14] used statistical features. The study combined various feature extraction meth-
ods and compared them. The combination of statistical and energy features resulted in 
93% accuracy for utterance recognition and 94% accuracy for subject classification. Most 
prior research has concentrated on vowels or specific words; thus, there is a need for stud-
ies focusing on bilabial sounds. Moreover, studies on cleft signals in the Indonesian lan-
guage are still limited. Consequently, this research will analyze words containing bilabial 
sounds using DWT, the aim of this work is to find the most suitable mother wavelet to 
work on cleft speech signals. 

2. Materials and Methods 

The study comprises four stages as illustrated in Figure 1. The first stage involves the 
collection of speech signal data, followed by preprocessing of the signals to enhance their 
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quality. Subsequently, feature extraction is performed on the signals, and the final stage 
is classification. 

 

 
Figure 1. Proposed method 

2.1. Dataset 
The data collection was conducted by recording the voices of 20 volunteers, compris-

ing 10 volunteers with cleft conditions (including CL, CP, and CL/P) and 10 normal vol-
unteers. Each volunteer was asked to pronounce the word "Lampu," repeated 10 times. 
The selection of the word was based on the presence of the bilabial phonemes /p/ and /m/. 
A total of 200 voice signals were obtained and stored in *.wav format. The speech signal 
data were divided into two groups: 100 labeled as normal and 100 labeled as cleft. 

2.2. Pre-process 
 At this stage, the recorded speech signals will undergo quality enhancement. The 

quality improvement is achieved by reducing noise present in the signals. The method 
employed is pre-emphasis with a coefficient of α = 0.97. This technique enhances the qual-
ity of the signal at high frequencies. The mathematical formulation for this method is ex-
pressed in Equation (1): ���� = ���� −  	 ∗ ��� − 1� (1) 
 

Where y[n] represents the output signal, x[n] represents the input signal, α denotes 
the pre-emphasis coefficient, and x[n-1] represents the previous signal. After enhancing 
the signal quality, the next step is to normalize the signal to align the magnitudes, ensur-
ing that the highest magnitude in the signal is 1. The implementation of signal normaliza-
tion is represented by Equation (2), where Snorm is the output signal, s[n] is the original 
signal and max(|x[n]|) represents the absolute value of the signal: 

������� = ����max (|����|) (2) 

 

2.3. Features Extraction 
In this stage, the characteristics or features of the sound signal are extracted. One 

popular feature extraction method is Discrete Wavelet Transform (DWT). This method 
divides the signal into two channels: approximation channel (A) and detail channel (D). 
Channel A is obtained from a low-pass filter (LPF), while channel D is obtained from a 
high-pass filter (HPF). In the subsequent levels of decomposition, signal A will be further 
divided into A2 and D2, and so forth up to the desired level. The application of 2-level 
DWT decomposition is illustrated in the Figure 2. 
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Figure 2. DWT 2-level decomposition 

 
Equations 3 and 4 represent the mathematical forms that are used to compute the 

LPF and HPF. 

���� =  � = −∞ ������2� − ���
�  (3) 

���� =  � = −∞ ����ℎ�2� − ���
�  (4) 

 
In this study, the sound signal will be decomposed into 2 levels using several types 

of mother wavelets, such as Coiflet of order 1, Reverse Biorthogonal 1.1, Discrete Meyer, 
Biorthogonal, and Symlet of order 2. The selection of these mother wavelet types is based 
on previous research where these types have achieved high accuracy in speaker recogni-
tion [7]. After decomposing the signal using each type of mother wavelet, features will be 
extracted from channels D1 and D2. The extracted features include statistical characteris-
tics such as mean, median, standard deviation, kurtosis, and skewness. A total of 10 fea-
tures will be obtained for each signal. The selection of these features is based on research 
[14], [15] showing their effectiveness in achieving high accuracy in classification processes. 

 
2.4. Classification 

The classification stage is the step to categorize each signal based on the extracted 
features. In this stage, the classification method used is K-Nearest Neighbors (KNN). 
KNN is a method that is based on comparative learning [16], which operates in two steps: 
training and testing. In this study, the distance measure used to assess proximity is Eu-
clidean distance. The mathematical form of Euclidean distance is shown in Formula 5. 

!"# =  $�(�"% − �#%)&'
%()  (5) 

 
Where x and y represent the data whose distance needs to be measured, and n is the 

number of dimensions of each data point. To ensure accuracy variance, K-Fold Cross Val-
idation is also implemented; this method divides the data into K datasets, where the first 
dataset is used as the training set and the subsequent datasets are used as the testing sets. 
Then, the second dataset is used as the training set, and the remaining datasets are used 
as the testing sets, this process continues until K datasets are processed. The number of 
folds used in this study is 3 and 7. 
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3. Result and Discussion 

In this study, the proposed method is applied to a dataset of speech signals obtained 
from 20 volunteers, comprising 10 volunteers with cleft lip and/or palate conditions (CL, 
CP, and CL/P), and 10 volunteers with normal conditions. Each volunteer uttered the 
word 'Lampu' (lamp) 10 times, resulting in a total of 200 speech signal samples. The ac-
quired speech signals are first enhanced in quality using pre-emphasis with a coefficient 
α = 0.97. This process aims to improve signal quality at higher frequencies. Subsequently, 
each signal undergoes decomposition up to level 2 using DWT. During this process, sta-
tistical features of the signals are extracted. Five types of statistical features are extracted: 
mean, median, skewness, standard deviation, and kurtosis. These features are obtained 
from channels D1 and D2 of the signal, representing 10 features for each signal. Addition-
ally, several types of mother wavelets such as Coiflet of order 1, Reverse Biorthogonal 1.1, 
Discrete Meyer, Biorthogonal, and Symlet of order 2 are used in the decomposition pro-
cess. After feature extraction is completed, the features from each signal are fed into the 
K-Nearest Neighbors (KNN) classifier for classification. The classification results for each 
type of mother wavelet are shown in the following tables. 

Table 1. Accuracy result on K-Fold 3. 

Wavelet Family Accuracy Sensitivity Specificity 

Coif1 0,77 0,76 0,78 
Rbiol1.1 0,91 0,93 0,89 
Dmey 0,80 0,79 0,82 
Bior 0,90 0,93 0,88 

Sym2 0,75 0,75 0,77 
 

Table 2. Accuracy result on K-Fold 7. 

Wavelet Family Accuracy Sensitivity Specificity 

Coif1 0,77 0,77 0,76 
Rbiol1.1 0,93 0,94 0,92 
Dmey 0,81 0,81 0,81 
Bior 0,90 0,91 0,89 

Sym2 0,76 0,78 0,75 
 
The performance accuracy of various mother wavelets on K-Fold 3 is illustrated in 

Table 1. The wavelet Reverse Biorthogonal 1.1 achieves the highest accuracy at 91%, fol-
lowed closely by Biorthogonal at 90%. Additionally, experiments conducted with K-Fold 
set to 7 show an improvement in recognition accuracy, with Reverse Biorthogonal 1.1 
achieving the highest at 93%, followed by Biorthogonal as shown in Table 2. The excellent 
performance of Reverse Biorthogonal 1.1 is due to its capability to manage both symmetric 
and asymmetric signal properties, which is advantageous for addressing irregularities in 
cleft speech signals. Furthermore, Biorthogonal and Reverse Biorthogonal are proven to 
be advantageous in extracting features on certain phonemes [17]. The application of the 
DWT method facilitates multiresolution analysis of speech signals, effectively capturing 
low-frequency components associated with vocal fold vibrations and high-frequency 
components related to formant transitions and consonant articulation. This multiresolu-
tion analysis is essential for cleft speech signals, which show significant deviations in spec-
tral and temporal characteristics due to velopharyngeal dysfunction. Additionally, the se-
lection of the fold number in the model significantly impacts classification results. Wave-
lets like Reverse Biorthogonal 1.1 exhibit notable performance enhancement with an in-
crease in fold number, suggesting that evaluation with more folds provides a more precise 
representation of model performance. In contrast, wavelets such as Coiflet 1 and 
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Biorthogonal show consistent performance regardless of the number of folds, indicating 
strong stability in their performance. 

The Reverse Biorthogonal 1.1 wavelet offers substantial advantages in speech signal 
processing by effectively eliminating noise without removing speech information, unlike 
conventional thresholding methods. Reverse Biorthogonal 1.1 employs multistage convo-
lution with wavelet filters in both high and low pass frequency bands of the speech signal, 
ensuring noise removal in each band individually while maintaining speech integrity. 
This method yields superior results compared to traditional thresholding techniques like 
Donoho and Johnstone thresholding and the Birge-Massart thresholding strategy[18]. 
Nevertheless, these results underscore the effectiveness of Reverse Biorthogonal 1.1 in an-
alyzing cleft speech signals and highlight the importance of fold selection in thoroughly 
evaluating classification models. 

4. Conclusion 

In this research, cleft speech signals were examined using the Discrete Wavelet Trans-
form (DWT) with various mother wavelets to determine the most suitable one for these 
types of signals. The experiments revealed that the highest accuracy was obtained with 
the Reverse Biorthogonal wavelet of order 1.1, followed by the Biorthogonal wavelet. The 
accuracies recorded were 93% and 90%, with sensitivities and specificities of 94% and 92% 
for Reverse Biorthogonal 1.1, and 90% and 89% for Biorthogonal, respectively. Due to data 
constraints, this study does not encompass all types of cleft conditions and is limited to a 
few statistical features. Moreover, the study did not compare the performance of DWT 
with other feature extraction methods like MFCC, PLP, or PNCC. Future studies should 
increase the dataset size, include more types of cleft signals, explore additional features, 
and compare the effectiveness of each feature extraction method. This will provide a more 
comprehensive understanding of DWT's strengths and capabilities in processing cleft 
speech signals. 

Acknowledgment: The gratitude is extended to Universitas Muhammadiyah Mataram 
for their support in this research project through internal funding grants. 
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